769 research outputs found
Surface scattering velocities in III-nitride quantum well laser structures via the emission of hybrid phonons
We have theoretically and numerically studied nitride-based quantum well (QW)
laser structures. More specifically, we have used a QW made with III-nitride
where the width of the barrier region is large relative to the electron mean
free path, and we have calculated the electron surface capture velocities by
considering an electron flux which is captured into the well region. The
process is assisted by the emission of the longitudinal optical phonons as
predicted by the hybrid (HB) model. The results of surface capture velocities
via the emission of HB phonons are compared to the emission of the dielectric
continuum phonons (Zakhleniuk et al 1999 Phys. Status Solidi a 176 79). Our
investigation shows that the two different phonon models predict almost the
same results for the non-retarded limit. Furthermore, the surface capture
velocities strongly depend on the size of the structure and the heterostructure
materials. Lastly, a comparison to the recent experimental values shows that
our model could accurately describe the experimentally measured parameters of
the quantum capture processes
Information Nonanticipative Rate Distortion Function and Its Applications
This paper investigates applications of nonanticipative Rate Distortion
Function (RDF) in a) zero-delay Joint Source-Channel Coding (JSCC) design based
on average and excess distortion probability, b) in bounding the Optimal
Performance Theoretically Attainable (OPTA) by noncausal and causal codes, and
computing the Rate Loss (RL) of zero-delay and causal codes with respect to
noncausal codes. These applications are described using two running examples,
the Binary Symmetric Markov Source with parameter p, (BSMS(p)) and the
multidimensional partially observed Gaussian-Markov source. For the
multidimensional Gaussian-Markov source with square error distortion, the
solution of the nonanticipative RDF is derived, its operational meaning using
JSCC design via a noisy coding theorem is shown by providing the optimal
encoding-decoding scheme over a vector Gaussian channel, and the RL of causal
and zero-delay codes with respect to noncausal codes is computed.
For the BSMS(p) with Hamming distortion, the solution of the nonanticipative
RDF is derived, the RL of causal codes with respect to noncausal codes is
computed, and an uncoded noisy coding theorem based on excess distortion
probability is shown. The information nonanticipative RDF is shown to be
equivalent to the nonanticipatory epsilon-entropy, which corresponds to the
classical RDF with an additional causality or nonanticipative condition imposed
on the optimal reproduction conditional distribution.Comment: 34 pages, 12 figures, part of this paper was accepted for publication
in IEEE International Symposium on Information Theory (ISIT), 2014 and in
book Coordination Control of Distributed Systems of series Lecture Notes in
Control and Information Sciences, 201
High-Pressure Synthesis of a Pentazolate Salt
The pentazolates, the last all-nitrogen members of the azole series, have
been notoriously elusive for the last hundred years despite enormous efforts to
make these compounds in either gas or condensed phases. Here we report a
successful synthesis of a solid state compound consisting of isolated
pentazolate anions N5-, which is achieved by compressing and laser heating
cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The
experiment was guided by theory, which predicted the transformation of the
mixture at high pressures to a new compound, cesium pentazolate salt (CsN5).
Electron transfer from Cs atoms to N5 rings enables both aromaticity in the
pentazolates as well as ionic bonding in the CsN5 crystal. This work provides a
critical insight into the role of extreme conditions in exploring unusual
bonding routes that ultimately lead to the formation of novel high nitrogen
content species
Suppression of electron relaxation and dephasing rates in quantum dots caused by external magnetic fields
An external magnetic field has been applied in laterally coupled dots (QDs)
and we have studied the QD properties related to charge decoherence. The
significance of the applied magnetic field to the suppression of
electron-phonon relaxation and dephasing rates has been explored. The coupled
QDs have been studied by varing the magnetic field and the interdot distance as
other system parameters. Our numerical results show that the electron
scattering rates are strongly dependent on the applied external magnetic field
and the details of the double QD configuration.Comment: 13 pages, 6 figure
Further expansion of the alien seaweed Caulerpa taxifolia var. distichophylla (Sonder) Verlaque, Huisman & Procacini (Ulvophyceae, Bryopsidales) in the Eastern Mediterranean Sea
We are grateful to Andreas Antoniou (Dep. of Environment, Ministry of Agriculture, Rural Development & Environment, Cyprus) for his assistance in the preparation of the illustrations. We would also like to thank Dr. Sotiris Orfanidis (NAGREF – Fisheries Research Institute, Kavala, Greece) for his valuable advice and both the DFMR and HSR / HCMR Rhodes crew and George Hatiris for their help in samplings. Special thanks are due to Dinos Leonidou (SeaQuest Divers Cyprus) for accompanying the deep dive for sampling Caulerpa at Cavo Greco. We are grateful to the Total Foundation (Paris) for its funding support to this study within the framework of the project “Brown algal ecology and biodiversity in the eastern Mediterranean Sea” and to the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council and contributing institutions; grant reference HR09011).Peer reviewedPublisher PD
Recent trends in molecular diagnostics of yeast infections : from PCR to NGS
The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection. In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile. Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the advantages and disadvantages of each methodology and discuss the most promising developments in their path from bench to bedside
Electronic structure of rectangular quantum dots
We study the ground state properties of rectangular quantum dots by using the
spin-density-functional theory and quantum Monte Carlo methods. The dot
geometry is determined by an infinite hard-wall potential to enable comparison
to manufactured, rectangular-shaped quantum dots. We show that the electronic
structure is very sensitive to the deformation, and at realistic sizes the
non-interacting picture determines the general behavior. However, close to the
degenerate points where Hund's rule applies, we find spin-density-wave-like
solutions bracketing the partially polarized states. In the
quasi-one-dimensional limit we find permanent charge-density waves, and at a
sufficiently large deformation or low density, there are strongly localized
stable states with a broken spin-symmetry.Comment: 8 pages, 9 figures, submitted to PR
Whitman and Nietzsche: A Comparative Study of Their Thought
This volume will be a great aid to students and scholars alike in American literature, American thought, the history of ideas, and comparative literature. Stavrou draws from the entire bodies of work by Whitman and Nietzsche to explore the parallels in the authors' conceptions of paradox, the totality of life, and solitude among other themes in this exploration of the underlying philosophical similarities of these two great writers of the nineteenth century
A Newly Identified Susceptibility Locus near FOXP1 Modifies the Association of Gastroesophageal Reflux with Barrett's Esophagus
- …
