96 research outputs found

    Design and Construction of Multigenic Constructs for Plant Biotechnology Using the GoldenBraid Cloning Strategy

    Full text link
    GoldenBraid (GB) is an iterative and standardized DNA assembling system specially designed for Multigene Engineering in Plant Synthetic Biology. GB is based on restriction–ligation reactions using type IIS restriction enzymes. GB comprises a collection of standard DNA pieces named “GB parts” and a set of destination plasmids (pDGBs) that incorporate the multipartite assembly of standardized DNA parts. GB reactions are extremely efficient: two transcriptional units (TUs) can be assembled from several basic GBparts in one T-DNA less than 24 h. Moreover, larger assemblies comprising 4–5 TUs are routinely built in less than 2 working weeks. Here we provide a detailed view of the GB methodology. As a practical example, a Bimolecular Fluorescence Complementation construct comprising four TUs in a 12 kb DNA fragment is presented.Sarrion-Perdigones, A.; Palací, J.; Granell Richart, A.; Orzáez Calatayud, DV. (2014). Design and Construction of Multigenic Constructs for Plant Biotechnology Using the GoldenBraid Cloning Strategy. Methods in Molecular Biology. 1116:133-151. doi:10.1007/978-1-62703-764-8_10S1331511116Haseloff J, Ajioka J (2009) Synthetic biology, history, challenges and prospects. J R Soc Interface 6(Suppl 4):S389–S391Check E (2005) Synthetic biology, designs on life. Nature 438:417–418Kosuri S, Eroshenko N, LeProust EM et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology, from parts to pathways and beyond. Integr Biol 3:109–118Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid, an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622Sarrion-Perdigones A, Vilar-Vazquez M et al (2013) GoldenBraid2.0, A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631Engler C, Gruetzner R, Kandzia R (2009) Golden gate shuffling, a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647Bracha-Drori K, Shichrur K, Katz A et al (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427Smaczniak C, Immink RG, Muino JM et al (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109:1560–1565de Folter S, Immink RG, Kieffer M et al (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17:1424–1433Lorenz WW, McCann RO, Longiaru M et al (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88:4438–4442Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96: 14147–14152Hellens RP, Edwards EA, Leyland NR et al (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26: 1301–1308Kapila J, DeRycke R, VanMontagu M et al (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–10

    FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture

    Full text link
    [EN] MADS-domain transcription factors are well known for their roles in plant development and regulate sets of downstream genes that have been uncovered by high-throughput analyses. A considerable number of these targets are predicted to function in hormone responses or responses to environmental stimuli, suggesting that there is a close link between developmental and environmental regulators of plant growth and development. Here, we show that the Arabidopsis MADS-domain factor FRUITFULL (FUL) executes several functions in addition to its noted role in fruit development. Among the direct targets of FUL, we identified SMALL AUXIN UPREGULATED RNA 10 (SAUR10), a growth regulator that is highly induced by a combination of auxin and brassinosteroids and in response to reduced R:FR light. Interestingly, we discovered that SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle. Furthermore, we identified a number of other genes involved in hormone pathways and light signalling as direct targets of FUL in the stem, demonstrating a connection between developmentally and environmentally regulated growth programs.We thank Arjo Meijering for assistance with the light measurements, Niek Stortenbeker for contributions to the manuscript, and Ueli Grossniklaus (University of Zurich) for financial and technical support. MB was supported by the Dutch Organization for Scientific research (NWO) in the framework of the ERA-NET on Plant Genomics (ERA-PG) program project CISCODE and by an NWO Veni-grant. In part, this work was performed in Ueli Grossniklaus' laboratory at the University of Zurich with support through an EMBO LT Fellowship to MB and a grant from the Swiss National Science Foundation to Ueli Grossniklaus. HM was supported by an NWO Vidi-grant, granted to KK.Bemer, M.; Van Mourik, H.; Muiño, JM.; Ferrandiz Maestre, C.; Kaufmann, K.; Angenent, G. (2017). FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. Journal of Experimental Botany. 68(13):3391-3403. https://doi.org/10.1093/jxb/erx184S33913403681

    SELEX-seq : A method to determine DNA binding specificities of plant transcription factors

    No full text
    Systematic evolution of ligands by exponential enrichment (SELEX) is a method that allows isolating specific nucleotide sequences that interact with a DNA binding protein of choice. By using a transcription factor (TF) and a randomized pool of double-stranded DNA, this technique can be used to characterize TF DNA binding specificities and affinities. The method is based on protein-DNA complex immunoprecipitation with protein-specific antibodies and subsequent DNA selection and amplification. Application of massively parallel sequencing (-seq) at each cycle of SELEX allows determining the relative affinities to any DNA sequence for any transcription factor or TF complex. The resulting TF DNA binding motifs can be used to predict potential DNA binding sites in genomes and thereby direct target genes of TFs.</p

    Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies

    No full text
    Members of the MADS-box transcription factor family play essential roles in almost every developmental process in plants. Many MADS-box genes have conserved functions across the flowering plants, but some have acquired novel functions in specific species during evolution. The analyses of MADS-domain protein interactions and target genes have provided new insights into their molecular functions. Here, we review recent findings on MADS-box gene functions in Arabidopsis and discuss the evolutionary history and functional diversification of this gene family in plants. We also discuss possible mechanisms of action of MADS-domain proteins based on their interactions with chromatin-associated factors and other transcriptional regulators
    • …
    corecore