4,713 research outputs found
Internal and External Resonances of Dielectric Disks
Circular microresonators (microdisks) are micron sized dielectric disks
embedded in a material of lower refractive index. They possess modes with
complex eigenvalues (resonances) which are solutions of analytically given
transcendental equations. The behavior of such eigenvalues in the small opening
limit, i.e. when the refractive index of the cavity goes to infinity, is
analysed. This analysis allows one to clearly distinguish between internal
(Feshbach) and external (shape) resonant modes for both TM and TE
polarizations. This is especially important for TE polarization for which
internal and external resonances can be found in the same region of the complex
wavenumber plane. It is also shown that for both polarizations, the internal as
well as external resonances can be classified by well defined azimuthal and
radial modal indices.Comment: 5 pages, 8 figures, pdflate
List of Birds from Durian
ABSTRACT NOT AVAILABL
Classical orbit bifurcation and quantum interference in mesoscopic magnetoconductance
We study the magnetoconductance of electrons through a mesoscopic channel
with antidots. Through quantum interference effects, the conductance maxima as
functions of the magnetic field strength and the antidot radius (regulated by
the applied gate voltage) exhibit characteristic dislocations that have been
observed experimentally. Using the semiclassical periodic orbit theory, we
relate these dislocations directly to bifurcations of the leading classes of
periodic orbits.Comment: 4 pages, including 5 figures. Revised version with clarified
discussion and minor editorial change
Spectral statistics in chaotic systems with a point interaction
We consider quantum systems with a chaotic classical limit that are perturbed
by a point-like scatterer. The spectral form factor K(tau) for these systems is
evaluated semiclassically in terms of periodic and diffractive orbits. It is
shown for order tau^2 and tau^3 that off-diagonal contributions to the form
factor which involve diffractive orbits cancel exactly the diagonal
contributions from diffractive orbits, implying that the perturbation by the
scatterer does not change the spectral statistic. We further show that
parametric spectral statistics for these systems are universal for small
changes of the strength of the scatterer.Comment: LaTeX, 21 pages, 7 figures, small corrections, new references adde
Spectral Statistics of "Cellular" Billiards
For a bounded planar domain whose boundary contains a number of
flat pieces we consider a family of non-symmetric billiards
constructed by patching several copies of along 's. It is
demonstrated that the length spectrum of the periodic orbits in is
degenerate with the multiplicities determined by a matrix group . We study
the energy spectrum of the corresponding quantum billiard problem in
and show that it can be split in a number of uncorrelated subspectra
corresponding to a set of irreducible representations of . Assuming
that the classical dynamics in are chaotic, we derive a
semiclassical trace formula for each spectral component and show that their
energy level statistics are the same as in standard Random Matrix ensembles.
Depending on whether is real, pseudo-real or complex, the spectrum
has either Gaussian Orthogonal, Gaussian Symplectic or Gaussian Unitary types
of statistics, respectively.Comment: 18 pages, 4 figure
Effects of periodic forcing on a Paleoclimate delay model
This is final version. Available from SIAM via the DOI in this record.We present a study of a delay differential equation (DDE) model for the Mid-Pleistocene Transition. We investigate the behavior of the model when subjected to periodic forcing. The unforced model has a bistable region consisting of a stable equilibrium along with a large amplitude stable periodic orbit. We are interested in how forcing affects solutions in this region. The results here are compared to what is found when the model is forced with the quasiperiodic insolation. The quasiperiodic forcing displays a threshold behavior when the forcing amplitude is increased - moving the model from a non-transitioning regime to a transitioning regime. Similar threshold behavior is found when the periodic forcing amplitude is increased. A bifurcation analysis shows that the threshold is not due to a bifurcation but instead to a shifting basin of attraction.European Union Horizon 2020Engineering and Physical Sciences Research Council (EPSRC
Convergence of equation-free methods in the case of finite time scale separation with application to deterministic and stochastic systems
This is the author accepted manuscript. The final version is available from SIAM via the DOI in this record.41 pages of supplementary material available at https://doi.org/10.6084/m9.figshare.6166421A common approach to studying high-dimensional systems with emergent low-dimensional behavior is based on lift-evolve-restrict maps (called equation-free methods): first, a user-defined lifting operator maps a set of low-dimensional coordinates into the high-dimensional phase space, then the high-dimensional (microscopic) evolution is applied for some time, and finally a user-defined restriction operator maps down into a low-dimensional space again. We prove convergence of equation-free methods for finite time-scale separation with respect to a method parameter, the so-called healing time. Our convergence result justifies equation-free methods as a tool for performing high-level tasks such as bifurcation analysis on high-dimensional systems. More precisely, if the high-dimensional system has an attracting invariant manifold with smaller expansion and attraction rates in the tangential direction than in the transversal direction (normal hyperbolicity), and restriction and lifting satisfy some generic transversality conditions, then an implicit formulation of the lift-evolve-restrict procedure generates an approximate map that converges to the flow on the invariant manifold for healing time going to infinity. In contrast to all previous results, our result does not require the time scale separation to be large. A demonstration with Michaelis-Menten kinetics shows that the error estimates of our theorem are sharp. The ability to achieve convergence even for finite time scale separation is especially important for applications involving stochastic systems, where the evolution occurs at the level of distributions, governed by the Fokker-Planck equation. In these applications the spectral gap is typically finite. We investigate a low-dimensional stochastic differential equation where the ratio between the decay rates of fast and slow variables is 2.J. Sieber’s research was supported by funding from the
European Union’s Horizon 2020 research and innovation programme under Grant
Agreement number 643073, by the EPSRC Centre for Predictive Modelling in Healthcare
(Grant Number EP/N014391/1) and by the EPSRC Fellowship EP/N023544/1.
C. Marschler and J. Starke would like to thank Civilingeniør Frederik Christiansens
Almennyttige Fond for financial support. J. Starke would also like to thank
the Villum Fonden (VKR-Centre of Excellence Ocean Life), the Technical University
of Denmark and Queen Mary University of London for financial support
Geometrical theory of diffraction and spectral statistics
We investigate the influence of diffraction on the statistics of energy
levels in quantum systems with a chaotic classical limit. By applying the
geometrical theory of diffraction we show that diffraction on singularities of
the potential can lead to modifications in semiclassical approximations for
spectral statistics that persist in the semiclassical limit . This
result is obtained by deriving a classical sum rule for trajectories that
connect two points in coordinate space.Comment: 14 pages, no figure, to appear in J. Phys.
Significance of Ghost Orbit Bifurcations in Semiclassical Spectra
Gutzwiller's trace formula for the semiclassical density of states in a
chaotic system diverges near bifurcations of periodic orbits, where it must be
replaced with uniform approximations. It is well known that, when applying
these approximations, complex predecessors of orbits created in the bifurcation
("ghost orbits") can produce pronounced signatures in the semiclassical spectra
in the vicinity of the bifurcation. It is the purpose of this paper to
demonstrate that these ghost orbits themselves can undergo bifurcations,
resulting in complex, nongeneric bifurcation scenarios. We do so by studying an
example taken from the Diamagnetic Kepler Problem, viz. the period quadrupling
of the balloon orbit. By application of normal form theory we construct an
analytic description of the complete bifurcation scenario, which is then used
to calculate the pertinent uniform approximation. The ghost orbit bifurcation
turns out to produce signatures in the semiclassical spectrum in much the same
way as a bifurcation of real orbits would.Comment: 20 pages, 6 figures, LATEX (IOP style), submitted to J. Phys.
- …