Gutzwiller's trace formula for the semiclassical density of states in a
chaotic system diverges near bifurcations of periodic orbits, where it must be
replaced with uniform approximations. It is well known that, when applying
these approximations, complex predecessors of orbits created in the bifurcation
("ghost orbits") can produce pronounced signatures in the semiclassical spectra
in the vicinity of the bifurcation. It is the purpose of this paper to
demonstrate that these ghost orbits themselves can undergo bifurcations,
resulting in complex, nongeneric bifurcation scenarios. We do so by studying an
example taken from the Diamagnetic Kepler Problem, viz. the period quadrupling
of the balloon orbit. By application of normal form theory we construct an
analytic description of the complete bifurcation scenario, which is then used
to calculate the pertinent uniform approximation. The ghost orbit bifurcation
turns out to produce signatures in the semiclassical spectrum in much the same
way as a bifurcation of real orbits would.Comment: 20 pages, 6 figures, LATEX (IOP style), submitted to J. Phys.