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Abstract. A common approach to studying high-dimensional systems with emergent low-
dimensional behavior is based on lift-evolve-restrict maps (called equation-free methods): first, a
user-defined lifting operator maps a set of low-dimensional coordinates into the high-dimensional
phase space, then the high-dimensional (microscopic) evolution is applied for some time, and fi-
nally a user-defined restriction operator maps down into a low-dimensional space again. We prove
convergence of equation-free methods for finite time-scale separation with respect to a method pa-
rameter, the so-called healing time. Our convergence result justifies equation-free methods as a tool
for performing high-level tasks such as bifurcation analysis on high-dimensional systems.

More precisely, if the high-dimensional system has an attracting invariant manifold with smaller
expansion and attraction rates in the tangential direction than in the transversal direction (normal
hyperbolicity), and restriction and lifting satisfy some generic transversality conditions, then an
implicit formulation of the lift-evolve-restrict procedure generates an approximate map that converges
to the flow on the invariant manifold for healing time going to infinity. In contrast to all previous
results, our result does not require the time scale separation to be large. A demonstration with
Michaelis-Menten kinetics shows that the error estimates of our theorem are sharp.

The ability to achieve convergence even for finite time scale separation is especially important
for applications involving stochastic systems, where the evolution occurs at the level of distributions,
governed by the Fokker-Planck equation. In these applications the spectral gap is typically finite.
We investigate a low-dimensional stochastic differential equation where the ratio between the decay
rates of fast and slow variables is 2.
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1. Introduction. High-dimensional dynamical systems with time scale sepa-
ration have under certain assumptions the potential to be studied and understood
through a reduction to low-dimensional systems. In most cases these reduction meth-
ods are applied directly to the high-dimensional systems of equations [39]. The most
common approaches are referred to as averaging and mean-field approximation [44],
the slaving principle or adiabatic elimination [19] in the physics literature. The aim of
these methods is to reduce the complexity of a high-dimensional (here also called mi-
croscopic) system to a relatively simple low-dimensional (here also called macroscopic)
system. After reduction, the long-term dynamics of the system can be analyzed by
studying the low-dimensional macroscopic system, using techniques that may only be
available for low-dimensional deterministic systems (e.g., detailed bifurcation analy-
sis). The underlying assumption is that a trajectory of the microscopic system will
rapidly relax onto a low-dimensional manifold, which it will then track on a longer time
scale, following the slower macroscopic equations. Thus, one speaks of slow variables,
which are the coordinates on the slow low-dimensional manifold, and fast variables
transversal to the slow manifold. The notion that the fast variables are “slaved” by
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the slow variables describes that over long time the microscopic trajectories track the
slow manifold.

The justification for this reduction is simplest and strongest if the underlying mi-
croscopic dynamical system possesses a low-dimensional attracting invariant manifold.
In these cases mathematical theorems on persistence of invariant manifolds can be ap-
plied. Proofs were given by Fenichel [15] and Hirsch et al. [20] for finite-dimensional
smooth dynamical systems such as ordinary differential equation (ODEs) and maps
and by Bates et al. [6, 7] for general semiflows (covering certain classes of partial dif-
ferential equations). Certain cases of averaging (such as periodic and quasi-periodic
forcing) may also be reduced to invariant manifold persistence.

The case for model reduction is more subtle if the microscopic system is stochastic
(or more generally, ergodic), for example, if the model is given by a multi-particle or
agent-based simulation. The time-scale separation for these systems occurs if, for
example, the number of particles is large. A model case for stochastic systems is the
reduction of a high-dimensional system of stochastic differential equations (SDE) to
a low-dimensional SDE acting on a slower time scale (smaller drift terms and smaller
noise amplitude than the microscopic system). In this case, the arguments for model
reduction look formally similar to the case of attracting manifolds in deterministic
systems [36, 17]. However, the underlying mathematical convergence results are not as
strong. Two aspects in which the deterministic results are stronger than the stochastic
results will have implications on convergence results for computational methods:

Validity for finite time-scale separation: For invariant manifolds in a deterministic
ODE the time scale separation (let us call it ε) is measured as the ratio between the
rate of attraction along directions tangential to the manifold (dtan) and transversal
to the manifold (dtr, so ε = dtan/dtr). As long as this ratio ε is less than unity, the
manifold persists. Let us call this persistent low-dimensional manifold C. Persistence
implies that, even for a finite ε, a reduced model on this manifold C exists, describing
some trajectories of the microscopic system with perfect accuracy (those that lie on
C). In practice the dynamics on the slow manifold C is often approximated by an
expansion in ε.

Shadowing : Even more, every point u from an open neighborhood of C has a
shadowing point g(u) ∈ C. The difference between the trajectories starting from u
and g(u) goes to zero in time with a rate close to dtr. This means that the reduced
model describes all nearby trajectories even for positive ε with perfect accuracy except
for rapidly decaying terms. The nonlinear projection u 7→ g(u) ∈ C is called the stable
fiber projection.

Compared to the above, the precise mathematical convergence statements in
[36, 17] for stochastic systems with time scale separation are weaker. They are con-
cerned with the limit ε → 0 and prove that moments of the slow coordinates of the
microscopic trajectory and of the trajectories of the slow model, derived by a formal
expansion in ε, converge to each other for ε→ 0 [36].

On-demand computation of slow flow — Equation-free framework. The above
mathematical theorems underpin the derivation of approximate low-dimensional mod-
els for large-dimensional systems. However, they also provide guidance for the con-
vergence analysis of computational methods that avoid the explicit derivation of a
low-dimensional model, but merely assume its existence. A general framework for
analysing slow-time scale behaviour of systems with time scale separation was pro-
posed by Kevrekidis et al. under the name “equation-free computations” [23, 16,
25]. The assumption behind equation-free computations is the existence of a slow
low-dimensional description (in Rd) for some macroscopic quantities of the high-
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Fig. 1.1. Lift-evolve-restrict map P (t; ·) in low-dimensional space Rd used in equation-free
computations.

dimensional microscopic system (which is defined in RD) that contains a d-dimensional
invariant manifold C, which we will call the slow manifold. We do not append a sub-
script ε to C, since our main result will only assume existence and smoothness of the
invariant manifold C and its stable fiber projection, but not consider the limit of time
scale separation ε → 0. The framework, illustrated in Figure 1.1, only relies on the
availability of a microscopic time stepper (a map M(t; ·) : RD 7→ RD for t ≥ 0) that
can be called at selected microscopic initial values u ∈ RD. The goal is to compose
a macroscopic time stepper Φ∗(δ; ·) : Rd 7→ Rd for δ ∈ R (possibly including δ < 0)
in some coordinates for the slow manifold C, which is then amenable to higher-level
tasks such as bifurcation analysis.

For equation-free computations the user also has to choose two operators, the
lifting L : Rd 7→ RD and the restriction R : RD 7→ Rd, which are maps between
the original high-dimensional (RD) microscopic level and the low-dimensional (Rd)
macroscopic level. The user-defined lifting L and restriction R, together with the
time stepper M(t; ·) define the central building block of equation-free methodology,
the “lift-evolve-restrict” map,

P : [0,∞)× domL 3 (t, xL) 7→ R(M(t;L(xL))) ∈ rgR

(see Figure 1.1). For a given value xL ∈ Rd of macroscopic quantities, one first
applies the lifting L to xL getting a microscopic state u, then one runs the microscopic
simulation for time t starting from u (applying the microscopic evolution M(t;u)),
and finally one applies the restriction R to the result M(t;u).

The use of the lift-evolve-restrict map P assumes that the trajectory t 7→M(t;u)
of the time stepper will be close to the slow manifold C most of the time. Assuming
this, equation-free methods aim to extract information about the slow flow along C by
calling the lift-evolve-restrict map P judiciously. The simplest approach would be to
use P (t; ·) as an approximation for M(t; ·) restricted to C (called explicit equation-free
computation in [33]).

When using equation-free methods one faces several challenges, both analytical
and in terms of implementation. First, as the slow manifold C cannot be assumed
to be known to the user, the method cannot assume that the user provides a lifting
operator L that maps onto C. This leads to initial fast transients in the trajectory
that will also change the supposedly slow variables, unless the stable fiber projection
g : RD → C keeps the restriction constant (the criterion would be R◦g ◦ L ≈ I).
Since the projection g cannot be assumed to be known either, this implies that an
unknown nonlinear transformation is applied to the variables in domL before the slow
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dynamics start. A detailed illustration of this problem is given in Figure 2.1 and its
description in section 2.

Second, the justification for equation-free methods relies on the stronger results for
classical attracting invariant manifolds of deterministic systems (including persistence
of the slow manifold for finite time-scale separation and its shadowing properties via
stable fiber projection). However, the methods are commonly applied to stochastic or
deterministic chaotic systems with time scale separation, for which convergence results
are weaker. In the stochastic case the microscopic time stepper M(t; ·) applies to
densities not single trajectories. Finally, for applications with stochastic microscopic
systems the additional difficulty of low computational accuracy in the evaluation of
M(t; ·) and possibly L and R may impose practical limitations.

This paper addresses the first challenge, the unknown slow manifold and fiber
projection. It proves convergence of the implicit approximation y = Φtskip(δ;x) for
the slow flow Φ∗(δ;x), given by the solution y of the d-dimensional nonlinear system

P (tskip; y) = P (tskip + δ;x)

for sufficiently large healing time tskip and a fixed finite time scale separation for the
scenario of an attracting d-dimensional invariant manifold in RD (strong reduction
results are available in this scenario). We also give a demonstration how the implicit
equation-free formulation behaves when it is applied to moments of distributions in
a stochastic system. Starting from this demonstration, we outline in our subsequent
discussion how convergence statements for stochastic systems may have to be formu-
lated.

Applications and recent practical improvements. A motivation for using the equa-
tion-free framework is that it extends methods which are otherwise only applicable
to low-dimensional dynamical systems directly to simulations of high-dimensional
complex systems. Classical applications of equation-free methods were macroscopic
bifurcation analysis for microscopic simulations in chemical engineering (see [24] for
a review). Recently similar analysis was performed on stochastic network models of
neurons [4, 30] or disease spread [18], or on agent-based models in ecology [45] and
social sciences (for example, for consumer lock-in [3], for pedestrian flow [33, 32], or
for trading [42]). Another example for a high-level task accessible via equation-free
methods is control design [43, 42].

Recent modifications and improvements to equation-free methods in multi-particle
or agent-based simulations are variance reduction [35, 3], restriction of computations
to patches in space [40, 41, 28] (for which a-priori error estimates can be proven
[40, 41]), and data-driven selection of the slow variables using diffusion maps [12, 33].
Debrabant et al. [13] construct an acceleration scheme for Monte-Carlo simulations
of high-dimensional SDEs based on moments of densities (the macroscopic variables),
and prove its convergence as the number of moments goes to infinity.

2. Current state of analysis.
Geometry of the idealized case of an attracting slow manifold. Analysis of the

equation-free framework (based on lift-evolve-restrict) is still ongoing. Convergence
analysis with general a-priori error estimates has been performed mostly for the ideal-
ized case where theD-dimensional microscopic problem has a d-dimensional attracting
invariant slow manifold C, which is rarely encountered in the practical applications
listed above. Exceptions are, for example, a study of bursting neurons [8] and the ap-
plication of implicit equation-free computations to generalize an algorithm for growing
stable manifolds of fixed points of two-dimensional maps a delay-differential equation
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with an unknown two-dimensional slow manifold [38]. Even for this idealized case one
faces the geometric difficulty illustrated in Figure 2.1. The geometry shows an exam-

Fig. 2.1. Geometry of lift-evolve-restrict map near slow manifold : macroscopic value xL ∈ Rd

gets lifted to L(xL), then evolved to M(t;L(xL)), then restricted to xR = R(M(t;L(xL)) ∈ Rd.
The aim is to approximate the true slow flow xL 7→ (g ◦ L)−1 ◦M(t; g(L(xL))), which involves the
unknown fiber projection g, using the map R◦M(t; ·)◦L, and assuming invertibility of g◦L : Rd 7→ C.
For this sketch, d = 1 and D = 2.

ple scenario where the microscopic system is two-dimensional, and the slow manifold
C is horizontal (and, thus, the slow motion is purely horizontal, drifting to the left).
Here we choose a lifting L that maps also onto a horizontal line rgL. However, rgL
is at a distance to C, because the precise location of C is in practice unknown. The
restriction R is the horizontal component of any point u ∈ R2. The spaces domL and
rgR (both one-dimensional) are drawn separately for clarity in Figure 2.1, but they
may be identical in examples. The fast motion of M(t; ·) is not perfectly vertical, but
has a significant horizontal component. Figure 2.1 also shows how the map P acts on
a typical point xL, showing its image L(xL), the result of the evolution, M(t;L(xL)),
and the result of the restriction P (t;xL) = xR = R(M(t;L(xL))).

The point xs ∈ C in Figure 2.1 is defined as the unique point xs on C such that
M(t;L(xL)) −M(t;xs) converges at an exponential rate dtr that is larger than the
maximal rate of contraction dtan tangential to C (which is horizontal). As mentioned
in the introduction as shadowing, this mapping is defined for every point u in the
neighborhood of C: for every u near C there exists a point g(u) ∈ C such that M(t;u)−
M(t; g(u)) ∼ exp(−dtrt) (in the illustration u = L(xL), g(u) = xs). This point g(u) is
called the stable fiber projection of u. The map g is known to have the same regularity
as C [15, 20]. For dtan � dtr the map can be expanded in orders of ε = dtan/dtr. The
thin grey lines (called stable fibers or isochrones) in Figure 2.1 indicate how points
in the plane are projected onto C under the nonlinear projection g for the illustrative
example.

Figure 2.1 makes clear that the dynamics of the map P (t;x) is qualitatively
different from the dynamics of M(t; ·) restricted to C, M(t; ·)|C . For the particular
geometry shown in Figure 2.1 P (t; ·) has a unique stable fixed point if the horizontal
attraction/expansion rate dtan of M(t; ·) on C is sufficiently small compared to the
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attraction rate dtr transversal to C. This fixed point is nearly independent of the
dynamics of M(t; ·) on C.

More generally, if the lifting operator L does not map xL into the low-dimensional
slow manifold C then the initial part of the trajectory t 7→ M(t;L(xL)), which is
computed as part of the lift-evolve-restrict map P , is a rapidly changing transient
toward the slow manifold C, which will generically also change the resulting xR.

In the limit of infinite time-scale separation (that is, the derivative of M with
respect to time, ∂1M(t; , u), goes to 0 for u ∈ C) the dynamics of the lift-evolve-
restrict map P is a small perturbation of the map R◦g ◦ L. Unless this limit map
equals the identity, P (t; ·) cannot be a good approximation of the slow flow along the
manifold C. Using x in the domain of the lifting L and the map g ◦ L : domL 7→ C
onto the manifold C as the coordinate map, the slow flow Φ∗ has the form

(2.1)

Φ∗(δ; ·) = (g ◦ L)−1 ◦M(δ; ·) ◦ (g ◦ L), or implicitly defined by

Φ∗ : R× domL 3 (δ, x) 7→ y∗ ∈ domL , where y∗ solves

R(g(L(y∗))) = R(M(δ; g(L(x))))

(using the notation (·)−1 for the inverse map). This definition is not directly com-
putable since the nonlinear projection g is unknown in general.

Feasible approaches to construct an accurate approximation of M(t; ·) restricted
to C are constrained runs, as discussed by Gear, Zagaris et al. [16, 48, 49], or the
introduction of a healing time tskip. The latter approach is studied in this paper.

Constrained runs. The approach of [16, 48, 49] to ensuring that R◦g ◦ L is close
to the identity is to enforce that the lifting L maps onto the manifold C with sufficient
accuracy for all x in its domain. Usually, this requires an additional scheme involving
the iterative application of L and M ; see [16, 48, 49]. The a-priori error estimates
prove that the lift-evolve-restrict scheme with these additional iterations has an er-
ror of order (dtan/dtr)

m if the constrained runs scheme is of order m, where dtan is
the attraction/repulsion time scale tangential to the slow manifold C and dtr is the
transversal attraction rate. The ratio dtan/dtr measures the time scale separation. It
is assumed to be small when applying constrained runs (and called ε), and O(εm)
convergence is proven in [16, 48, 49] in the limit ε→ 0. This limit will not be required
in our proof, later on.

Implicit formulation with healing time. A second, alternative, approach is to intro-
duce a healing time tskip, exploiting that M attracts along the fibers [25, 5]. Marschler
et al. [31] show that the healing time tskip can be motivated by introducing an addi-
tional shift M(tskip; ·) and its inverse into (2.1) (note that M(tskip; ·) is invertible on
the slow manifold C):

(2.2) y∗ = Φ∗(δ;x) = (g ◦ L)−1 ◦M(tskip; ·)−1 ◦M(δ + tskip; ·) ◦ g ◦ L(x).

Removing the inverses in (2.2) leads to an implicit equation for y∗ = Φ∗(δ;x) with
the healing time tskip as an additional parameter:

(2.3) R◦M(tskip; ·) ◦ g ◦ L(y∗) = R◦M(δ + tskip; ·) ◦ g ◦ L(x)

In (2.3) the parameter tskip has no effect since M(tskip; ·) is invertible on the slow
manifold. However, the difference M(tskip; ·) ◦ g −M(tskip; ·) decreases with tskip (at
rate ∼ exp(−dtrtskip)). In Figure 2.2 the distance between points along the trajectory
starting from L(x) (in red) and their projections g ◦ L(x) (white) illustrates this
convergence. Thus, we may approximate M(tskip; ·) ◦ g by M(tskip; ·) in (2.3). This
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Fig. 2.2. Trajectories involved in the implicit definition of y∗ and y using the scenario of
Figure 2.1: y∗ is the image of x under the true slow flow, y∗ = Φ∗(δ;x); yj are approximations for
different tskip, yj = Φtskip,j(δ;x).

results in a computable approximation ytskip = Φtskip(δ;x) of y∗, given implicitly by
the equation

(2.4) R(M(tskip;L(ytskip))) = R(M(δ + tskip;L(x))).

Figure 2.2 illustrates the effect of increasing healing time tskip in the scenario intro-
duced in Figure 2.1. The points y1 and y2 are the solutions of (2.4) for two different
healing times tskip,1 < tskip,2. Equation (2.4) means that the points yj are defined as
those elements of domL for which the trajectory starting from L(yj) has the same
horizontal component (restriction R) as M(tskip,j + δ;L(x)) after time tskip,j .

The implicit approach was analyzed and illustrated in a traffic model in [31]
and will also be studied in this paper. Vandekerckhove et al. [46] proposed and
demonstrated a similar approach, but applied the healing time backward in time by
fixing the image of the restriction: they solve x = R(M(tskip;L(xb))) for xb first and
then set y = R(M(δ + tskip;L(xb))). This gives an (approximate) representation ΦR∗
of the slow flow in the coordinates on the image of the restriction R: ΦR∗ (δ;x) =
R◦M(δ; ·) ◦ [R|C ]−1(x).

The coordinates for the flow on the slow manifold C are somewhat arbitrary as
the difference between the expressions used by Vandekerckhove et al. [46] and the
implicit expression (2.4) for Φtskip shows. For the coordinates in the space domL the
diffeomorphism between domL and C is g ◦ L, where g is the stable fiber projection,
as implied by (2.2). The diffeomorphism can be approximately computed by solving
R(M(2tskip;L(xg))) = R(M(tskip;L(x))) for xg and then using M(tskip;L(xg)) as the
approximation for [g ◦ L](x). The approximate diffeomorphism for the expression of

Vandekerckhove et al. [46] is [R|C ]−1
: x 7→M(tskip;L(xb)).

Marschler et al. [31] proved that the approximation ytskip is exponentially accurate
if dtan/dtr → 0: ‖ytskip − y∗‖ ∼ exp(−Kdtr/dtan) (for some constant K depending on
tskip). The error estimates in [31] require that tskipdtan/dtr and (tskip + δ)dtan/dtr
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stay bounded from above such that the convergence result is valid in the limit of
infinite time scale separation dtan/dtr → 0. This means that the assumptions of [31]
are similar to those required by schemes involving constrained runs [16, 48, 49]. The
analysis left open if the error goes to zero for tskip →∞ but the time scale separation
stays finite: dtan/dtr ∈ (0, 1).

Our paper will prove the general a-priori error estimate that ‖ytskip − y∗‖ ∼
exp((dtan − dtr)tskip) for tskip → ∞ and fixed dtan < dtr under some genericity con-
ditions on R and L. It will also give a convergence result for the derivatives of ytskip
with respect to its argument x: ‖∂jytskip − ∂jy∗‖ ∼ exp(((2j + 1)dtan − dtr)tskip) if
(2j + 1)dtan < dtr.

Analysis beyond attracting manifolds in slow-fast systems. As mentioned above,
equation-free analysis based on lift-evolve-restrict maps is more commonly applied
to problems that are assumed to have a fast subsystem, where the fast time scale
converges only in a statistical sense to a stationary measure conditioned on the slow
variables. In these cases the microscopic time stepper M(δ; ·) operates on measures
(or densities). It may be approximated by Monte Carlo simulations on ensembles
of initial conditions. Barkley et al. [5] investigated the behaviour of the lift-evolve-
restrict map P (δ; ·) = R◦M(δ; ·) ◦ L where the slow variables were leading moments
(thus, P was called moment map in [5]) on prototype examples from the class of
stochastic problems. The simplest example from [5] is a scalar stochastic differential
equation (SDE), for which the evolution of the probability distribution is governed by
a (linear) Fokker-Planck equation (FPE). Hence, the measure of time-scale separation
is the size of the spectral gap in the right-hand side of the FPE. The analysis in [5]
found that the dynamics of the map P was qualitatively different from the dynamics
of the underlying linear FPE. For example, P was nonlinear and had several coexisting
fixed points for certain choices of time δ.

Our paper will demonstrate for two different lifting operators L that the ap-
proximation ytskip , defined by (2.4), behaves exactly as predicted by our convergence
theorem. In particular, it preserves the metastability features and the linearity of the
flow generated by the FPE, thus, addressing the problems highlighted in [5].

2.1. Outline of results. Section 3 states the precise assumptions (time scale
separation for decay rates tangential and transversal to the invariant manifold C
(dtan < dtr) and transversality of R and L) for exponential convergence:

(2.5) ∂jytskip − ∂jy∗ ∼ exp(((2j + 1)dtan − dtr)tskip) for tskip →∞

(using the convention that ∂0y = y and assuming that the derivatives up to order
j + 1 exist). Estimate (2.5) predicts that convergence in tskip is slower for derivatives
of higher order. Section 4 demonstrates the convergence rates in tskip for ytskip and its
first two derivatives with respect to x for a singularly perturbed ODE modelling the
Michaelis-Menten kinetics (which was also used by [16, 48, 49] for illustration). Sec-
tion 5 studies the evolution of densities under a scalar SDE with a double-well potential
drift term also considered by Barkley et al. [5]. We demonstrate global convergence
of implicit equation-free methods for a linear lifting Llin. We also demonstrate local
convergence for the nonlinear lifting LGauss used in [5].

Section 6 discusses differences between observations of the behaviour in the SDE
and the predictions from the theoretical result. These are caused by the numerical
errors in the evaluations of lifting, evolution and restriction and their growth along
trajectories.

We conclude with an outlook on possible consequences of the results on application
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of equation-free methods to Monte-Carlo simulations of multi-particle or agent-based
systems. One important observation is that in some cases increasing the number
of agents or particles does not increase the spectral gap (and, thus, the time scale
separation). Didactic examples where the finiteness of the spectral gap is apparent are
the dynamic networks as considered by Gross and Kevrekidis [18]. The slow system is
an ODE derived from the pair-wise interaction approximation, cutting off an infinite
series of ODEs of higher-order interaction terms. The spectral gap between pair-wise
interaction terms and triplet interaction terms is finite even in the limit of infinitely
large networks.

Thus, the results from Section 3 are potentially applicable to equation-free anal-
ysis of stochastic multi-particle systems, where distributions of microscopic initializa-
tions are studied. This is in contrast to previous convergence results on constrained
runs [16, 48, 49] and implicit lifting [31], which only apply in the limit of infinite time
scale separation.

3. Convergence in the case of finite time-scale separation. We consider
a smooth dynamical system

(3.1) u̇ = f(u), u ∈ RD,

where D is large. We assume that the flow M generated by (3.1),

M : R× RD → RD, (t;u) 7→M(t;u)

has a d-dimensional compact relatively invariant manifold C (possibly with boundary).
That is, trajectories M(t;u) starting in u ∈ C either stay in C for all times t ∈ R, or
they stay in C until they cross the boundary ∂C of C. We assume that C is at least
kmax times differentiable. For a point u ∈ C, let us denote by N (u) the d-dimensional
tangent space to C. The following assumption states that attraction transversal to
the manifold C is faster than attraction or expansion tangential to C.

Assumption 3.1 (Hyperbolicity — Separation of time scales and transversal sta-
bility). There exists an open neighborhood U of the manifold C, a (possibly nonlinear)
projection g : U 7→ C (the so-called stable fiber projection), a pair of constants (decay
rates) 0 < dtan < dtr, and a bound C such that the following two conditions hold.

1. (tangential expansion/attraction rate) For all points u ∈ C on the manifold,
all tangent vectors v1, . . . , vkmax ∈ N (u) and all t ∈ R with M([0, t];u) ⊂ C

‖∂j2M(t;u)[v1, . . . , vkj ]‖ ≤ C exp(dtan|t|)‖v1‖ · . . . · ‖vj‖(3.2)

for all j ∈ {1, . . . , kmax}.
2. (Stability along transversal fiber projections) For all u ∈ U and all t > 0 with
M([0, t]; g(u)) ∈ C

‖∂j2M(t;u)− ∂j2M(t; g(u))‖ ≤ C exp(−tdtr)‖u− g(u)‖(3.3)

for all j ∈ {0, . . . , kmax}.
In (3.2) and (3.3) we use the convention that ∂jkM is the jth-order partial derivative
of M with respect to its kth argument, and that ∂0

2M (j = 0) is the flow M itself.
The norm on the left side of (3.3) is the usual operator norm for the multi-linear
operators ∂j2M(t, ·). The constants C, dtr and dtan are assumed to be independent of
the point u and the time t. Assumption (3.2) is also made for negative times t (using
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the convention that M([0, t];u) means M([t, 0];u) for t < 0) such that it is also an
assumption about the inverse of M , when restricted to C: M(−t, ·) = M−1(t, ·). The
constant dtr is the decay rate toward the manifold C, the constant dtan is the rate
of attraction and expansion along the flow restricted to C. The main requirement of
Assumption 3.1 is that dtr > dtan.

Transversality of restriction and lifting. Second, we assume basic compatibility
between

(3.4)
R : U ⊂ RD → Rd the restriction operator,

L : domL ⊂ Rd → RD the lifting operator,

and the invariant manifold C: the lifting L should map into the neighborhood U of
C in which the stable fiber projection g is defined, and the restriction R should be
defined on the projection g of the image of L along the stable fibers:

L(domL) ⊂ U , g(L(domL)) ⊂ domR∩ C,

In addition to these compatibility conditions, we impose the following two transver-
sality conditions on lifting L and restriction R.

Assumption 3.2 (Transversality of R and L).
1. the projection g is a diffeomorphism between rgL = L(domL) and C. In

particular, for all x ∈ domL ⊂ Rd

rank
∂

∂x
[g(L(x))] = rank [∂g(L(x)) ◦ ∂ L(x)] = d.

2. The map R, restricted to C, is a diffeomorphism between C and Rd. In par-
ticular, for all u ∈ C (N (u) is the tangent space to C in u)

dim ∂R(u)N (u) = d.

Coordinates on the slow manifold C. The maps R and L create two natural ways
to define local coordinate representations on the invariant manifold C, one by a map
from domL to C, one by a map from C to rgR. For our presentation we choose the
representation in domL coordinates:

g ◦ L : domL ⊂ Rd 7→ C ⊂ RD, x 7→ g(L(x)).

The inverse of g ◦ L is defined implicitly. Assume that u0 = g(L(x0)) for some
x0 ∈ domL. Then for u ∈ C near u0 the pre-image x = (g ◦ L)−1(u) is found
by solving R(u) = R(g(L(x))) for x ≈ x0, which has a locally unique solution by
Assumption 3.2.

We can represent the flow M on C as a flow in domL, denoting it by Φ∗:

Φ∗ : R× domL 7→ domL , Φ∗(δ;x) = [(g ◦ L)−1 ◦M(δ; ·) ◦ g ◦ L](x) := y(3.5)

(for δ ∈ R and x ∈ domL), where y is given implicitly as solution of a d-dimensional
system of nonlinear equations

R(g(L(y))) = R(M(δ; g(L(x)))).(3.6)

Assumption 3.2 on transversality implies that Φ∗ is well defined for small δ (since
y = x is a regular solution of (3.6) at δ = 0). For larger δ, one can break down
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the solution into smaller steps by increasing δ gradually from 0 and tracking the
curve y(δ) of solutions of (3.6), which is well parametrized by δ in every point by
Assumption 3.2. If domL is simply connected then this continuation approach makes
the implicit solution y used in the definition of Φ∗ unique. Let us define the map

P∗ : R× domL 3 (t, x) 7→ R(M(t; g(L(x)))) ∈ Rd.(3.7)

This map P∗ is well defined and invertible for all t ∈ R and x ∈ domL for which
the trajectory s 7→ M(s; g(L(x))) stays in C for all s between 0 and t. The implicit
definition (3.5) of the flow Φ∗ on C has the following form when expressed with the
help of this map P∗ on domL:

y = Φ∗(δ;x) if P∗(0; y) = P∗(δ;x).(3.8)

Since the flow M(δ; ·) is a diffeomorphism on C, we can replace the times 0 and δ in
the above implicit definition with tskip and tskip + δ for an arbitrary so-called healing
time tskip ∈ R (as long as M([0, tskip]; g(L(x))) ⊂ C). So, equivalent to (3.8), we have
for tskip > 0 with M([0, tskip]; g(L(x))) ⊂ C

y = Φ∗(δ;x) if P∗(tskip; y) = P∗(tskip + δ;x).(3.9)

Convergence Theorem for implicit equation-free computations with finite time-
scale separation. The stable fiber projection g (which is part of the definition of P∗)
is not known in most practical applications. Thus, implicit equation-free computations
use the explicit macroscopic time-t map P instead of P∗ in the equation defining y in
(3.9):

P : [0,∞)× domL 3 (t, x) 7→ R(M(t;L(x))) ∈ rgR(3.10)

such that we may define the approximate flow map

Φtskip : R× domL 3 (δ, x) 7→ y ∈ domL , where y solves P (tskip; y) = P (tskip + δ;x)
(3.11)

implicitly in a similar way to (3.9). Our general convergence theorem, the following
Theorem 3.3, states that Φtskip is well defined for large tskip (that is, the equation in
(3.11), defining Φtskip implicitly, has a locally unique solution), and that ∂jΦtskip is
an approximation of ∂jΦ∗ of order exp(((2j + 1)dtan − dtr)tskip) (including j = 0 for
the map Φtskip).

Theorem 3.3 (Convergence of approximate flow map at finite time-scale sepa-
ration).
Let us assume that the microscopic flow M satisfies Assumption 3.1 on time-scale
separation, and that the maps R and L satisfy Assumption 3.2 on transversality.

Let δmax > 0 and x ∈ domL be arbitrary. Let us also assume that x ∈ domL
maps to a point under g ◦ L that keeps a positive distance from the boundary ∂C of C
for all times t ≥ −δmax under M . That is,

(3.12) dist(M(t; g(L(x))), ∂C) ≥ c∂ for all t ≥ −δmax and some given c∂ > 0.

Then there exists a t0 ≥ δmax such that y = Φtskip(δ;x) is well defined by (3.11) for
all δ ∈ [−δmax, δmax] and tskip > t0. The estimate

(3.13) ‖∂j2Φtskip(δ;x)− ∂j2Φ∗(δ;x)‖ ≤ C exp(((2j + 1)dtan − dtr)tskip)

holds for all orders j ∈ {0, . . . , kmax − 1} satisfying (2j + 1)dtan < dtr. The constant
C depends on δmax and x, but not on tskip.
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Assumption (3.12) in Theorem 3.3 is made to permit arbitrarily large tskip while
still having Assumption 3.1 and Assumption 3.2 uniformly satisfied. If one considers
x ∈ domL for which the trajectory t 7→ M(t; g(L(x))) leaves C (by crossing the
boundary ∂C) then one has to put restrictions on δ and tskip to avoid crossing ∂C.
The theorem permits negative integration times δ shorter than t0 ≤ tskip and positive
integration times larger than tskip as long as the factor exp(dtan|δ|) is of order 1. Since
1/dtan and 1/dtr are the time scales of the dynamics inside the invariant manifold C
and transversal to it, the theorem covers time steps of length δ of order 1 in the
slow (1/dtan) time scale. The statement of Theorem 3.3 does not require that the
time-scale separation dtan/dtr goes to zero for convergence of the approximate map.
It only requires that dtan < dtr, where dtr is the attraction rate along fibers (see (3.3))
and dtan is the attraction and expansion rate tangential to the invariant manifold C.
Since the constant C in (3.13) is independent of tskip it can be chosen uniformly for
compact domains domL.

Outline of proof of Theorem 3.3. Existence and error of Φtskip : For the proof of
Theorem 3.3 we have to analyze the difference between the two defining equations for
the approximate solution y and the true solution y∗ = Φ∗(δ;x), both depending on x
as a parameter:

R(M(tskip;L(y))) = R(M(tskip + δ;L(x))),(3.14)

R(M(tskip; g(L(y∗)))) = R(M(tskip + δ; g(L(x)))).(3.15)

Rearranging the difference between (3.14) and (3.15), we obtain an implicit fixed-point
problem for y (recall that P∗(t; ·) = R◦M(t; ·) ◦ g ◦ L and P (t; ·) = R◦M(t; ·) ◦ L):
(3.16)
P∗(tskip; y) = P∗(tskip; y∗)+[P∗(tskip; y)−P (tskip; y)]+[P (tskip+δ;x)−P∗(tskip+δ;x)].

The norms of both terms in square brackets, P∗(tskip; y) − P (tskip; y) and P (tskip +
δ;x)− P∗(tskip + δ;x), are of order exp(−dtrtskip) by Assumption 3.1, equation (3.3)
(transversal stability with rate dtr of C). For the same reason, the Lipschitz constant
of P∗(tskip; y) − P (tskip; y) is of order exp(−dtrtskip), too. By Assumption 3.1, equa-
tion (3.2) (tangential decay rate inside the manifold is less than dtan), and Assump-
tion 3.2 on transversality of L and R, the inverse of P∗(tskip; ·) has a local Lipschitz
constant of order exp(dtantskip) near y∗. These two facts enable us to apply the Ba-
nach Contraction Mapping Principle to (3.16) to obtain a unique solution y ≈ y∗ for
large tskip. More precisely, y − y∗ is of order exp((dtan − dtr)tskip).

Inductive proof of error estimate for derivatives: We differentiate (3.16) with
respect to x in its fixed point y(tskip;x) up to j times and then re-arrange the resulting
equation for the jth-order derivatives of y and y∗ into the form

(3.17) ∂P∗(y)
[
∂jy − ∂jy∗

]
= [∂P∗(y)− ∂P∗(y∗)] ∂jy∗ + r.

In (3.17) we abbreviated ∂2P∗(tskip; ·) = ∂P∗(·), ∂jy = ∂j2y(tskip;x) and dropped the
argument x from y∗ and the arguments tskip and x from y. The remainder r is less
than C exp(((2j − 1)dtan − dtr)tskip) for some constant C by induction hypothesis.
The implicit expression (3.17) for ∂jy − ∂jy∗ shows why errors in derivatives of the
solution can grow for increasing tskip and insufficient time scale separation: the norms

of ∂P∗(y) − ∂P∗(y∗) and of [∂P∗(y)]
−1

are of order exp(dtantskip) due to (3.2). The
details of the proof are given in Appendix A.

4. Example: Michaelis-Menten kinetics. To illustrate the consequences of
error estimate (3.13), we look at a model for Michaelis-Menten kinetics with explicit
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time scale separation as studied in [34, 16, 48, 49]. The system is given in RD with
D = 2 as

(4.1) ẋ = ε [−x+ (x+ κ− λ)y] , ẏ = x− (x+ κ)y,

where x ∈ R is the slow variable, y ∈ R is the fast variable, and ε measures the
time scale separation. The parameters κ = 1, λ = 0.5 and ε = 0.01 are kept fixed
throughout this section.

In the singular case ε = 0, system (4.1) has a critical manifold C0 of equilibria,
given by the graph C0 = {(x, y) : y = x/(x + κ)}. For positive ε, the system has
a transversally stable invariant manifold, which can be represented as a graph Cε =
{(x, y) : y = hε(x)}, such that d = 1. In this section we put a subscript ε on quantities
to indicate their dependence on the parameter ε (so, writing, for example, Cε instead
of C). The graph hε can be expanded in ε for small ε > 0:

(4.2) y = hε(x) =
x

x+ κ
+

κλx

(x+ κ)4
ε+

κλx(2κλ− 3λx− κx− κ2)

(x+ κ)7
ε2 +O(ε3).

We plan to compare an equation-free approximate flow Φtskip(δ; ·), which is con-
structed below, to the true flow Φ∗(δ; ·). For this simple example we may approximate
the true flow Φ∗(δ; ·) by obtaining an approximation of the stable fiber projection gε.
For ε→ 0 in (4.1), gε has the limit gε(x, y)→ (x, h0(x)). Thus, every point in phase
space is approximately projected along vertical lines, as shown in Figure 4.1(a). For
positive ε this stable fiber projection persists and is perturbed by terms of order ε. A
general approximation algorithm for stable fibers in slow-fast systems was provided
by Kristiansen et al. [26]. However, we need the stable fibers only to a degree of ac-
curacy that permits us to compare Φ∗(δ; ·) to Φtskip(δ; ·) for demonstration purposes.
Thus, we expand gε = (gx,ε(x, y), gy,ε(x, y)) in ε. Since gε projects onto the manifold
Cε, we know that gy,ε(x, y) = hε(gx,ε(x, y)). The first-order expansion of gx,ε is

gx,ε(x, y) = x+
(x+ κ− λ)(y − 1)x+ κy

x+ κ
ε+O(ε2).

Figure 4.1 was produced using a third-order expansion of hε and gx,ε. The supple-
mentary material provides Matlab code which reproduces the graphs in Figure 4.1
and computes the expansion coefficients for hε and gx,ε to third order (see also Ap-
pendix B). Figures 4.1(a) and 4.1(c) show the phase space geometry. The slow man-
ifold Cε = {(x, y) : x = hε(x)} is shown in green, the stable fibers (pre-images of
selected points (xj , hε(xj)) on the slow manifold under the projection gε) are the
almost straight grey lines, and some sample trajectories of (4.1) are shown in pur-
ple. After a rapid transient all trajectories approach the slow manifold Cε, given
approximately by (4.2). Furthermore, Figure 4.1(c) shows in more detail how ini-
tial conditions on the same stable fiber, defined as the pre-image of x0 under gx,ε,
Gpre = {(x, y) : gx,ε(x, y) = x0}, collapse onto the same slow limiting trajectory (tra-
jectories shown in red in Figure 4.1(c)). In contrast, initial conditions with the same
y-component do so only up to an error of order ε (trajectories shown in purple in
Figure 4.1(c)).

To define the approximate flow Φtskip , we specify the restriction and lifting oper-
ators, R and L, for the Michaelis-Menten system as

R : R2 7→ R, R
(
x
y

)
= x, and L : R 7→ R2, L(x) =

(
x

0.5

)
.(4.3)
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Fig. 4.1. Michaelis-Menten dynamics: panels (a, c, e) for (4.1), panels (b, d, f) for rotated
coordinates (4.7). (a, b): Location of slow manifold Cε = {(x, y) : y = hε(x)} and stable fibers
in phase space. (c, d): Trajectories M([0, t0];Uini) (t0 = 20) starting from two sets Uini of initial
conditions: once from a subset of a vertical line, and once from a pre-image of a point under the
stable fiber projection (called gpre in the legend). (e, f): Difference of Φtskip (δ; ·) to third-order
asymptotic expansion of Φ∗(δ; ·) as a function of tskip. Parameters: λ = 0.5, κ = 1, ε = 0.01 in
(4.1), x = −0.1 ∈ domL and δ = 25 for (e,f).

The approximate time-δ map Φtskip(δ; ·) on the slow manifold is determined by
the root ztskip of

(4.4) F : R 3 z 7→ R(M(tskip;L(z)))−R(M(tskip + δ;L(x))) ∈ R

and setting Φtskip(δ;x) := ztskip (cf. (3.11)). We compare this to the true solution (or,
rather, the alternative approximation by expansion) Φ∗(δ;x), determined by the root
z∗ of

(4.5) F∗ : R 3 z 7→ R(gε(L(z)))−R(M(δ; gε(L(x)))) ∈ R,

setting Φ∗(δ;x) := z∗. Note, that F depends on tskip and δ, and F∗ depends on δ,
which are not included in the list of arguments to simplify notation. We solve (4.4) and
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(4.5) using a Newton iteration with tolerance 10−12, where we approximate M with
the fifth-order component of the DOPRI45 Runge-Kutta scheme with fixed step size
0.1 for the ODE (4.1). We approximate the first two derivatives of Φ∗ and Φtskip (and
the Jacobians needed inside the Newton iteration) by central finite differences with
step size ∆z = 10−4. The supplementary material contains didactic implementations
of Φ∗ and Φtskip for this example in the form of matlab code and its published output.
The error

(4.6) Ej(tskip) = |∂j2Φ∗(δ;x0)− ∂j2Φtskip(δ;x0)| (∂0
2Φ refers to Φ)

for x0 = −0.1 and δ = 25 is shown in Figure 4.1(e) for a range of healing times
tskip ∈ [0; 30]. Since ε = 10−2 and dtan ∼ ε, the quantity exp(dtanδ) is of order 1, as
required by Theorem 3.3.

The error plot Figure 4.1(e) shows that Φtskip , ∂2Φtskip and ∂2
2Φtskip approach a

limit at an exponential rate in tskip up to an accuracy determined by the accuracy
of the asymptotic expansion of Φ∗ (∼ ε4), round-off errors in the finite difference
approximations of the derivatives (∼ 10−4 for ∂2

2Φtskip), and the tolerance of the
Newton iteration. Furthermore, the convergence rate is indeed lower for higher orders
of the derivative of Φtskip as the estimate (3.13) in Theorem 3.3 suggests. The slope
of exp(−dtrtskip) is included as a lower bound for the error for comparison.

We also observe that the error of the flow and its derivatives is acceptably small
(≈ 10−3) even for the minimal value tskip = 0. Since R◦L equals the identity (see
(4.3)), the implicit equation-free method turns into an explicit formulation if tskip = 0.
However, the geometry of system (4.1) is not generic. The system (4.1) is given in an
explicit slow-fast form with one fast and one slow variable. This leads with our choice
of lifting and restriction to the degenerate situation that the stable fiber projection gε
is aligned with lifting and restriction to first order: R◦g0 ◦ L = I such that R◦gε ◦ L
is a small (order ε) perturbation of the identity. In this case the explicit equation-
free method without healing time (y = R(M(0;L(y))) = R(M(δ;L(x))), such that
tskip = 0) is accurate up to order ε. To create a situation with a generic arrangement
of the stable fiber projection gε, we study a rotated system of the Michaelis-Menten
dynamics (which was also used by [16]).

We apply the rotation matrix R to the system in order to obtain the dynamics
in the new coordinates (v, w)T ∈ R2 by

(
v
w

)
= R

(
x
y

)
, R =

(
1 1
−1 1

)
, such that Mrot

(
t; (v, w)T

)
= RM

(
t;R−1(x, y)T

)(4.7)

is the microscopic simulator in the new (v, w)T coordinates. In this rotated system
the time scale separation is no longer visible between v and w, since the slow and
fast variables are mixed. Figure 4.1(b) shows the phase space geometry with slow
manifold (green), stable fibers (grey) and sample trajectories. The initial transients
are no longer following a straight line parallel to a coordinate axis such that both,
v and w, change rapidly during transients. This situation is expected in a generic
situation when one applies equation-free methods without precise knowledge about
the slow and fast variables. We use the same restriction and lifting operators as
defined in (4.3) (but in the new coordinates (v, w): L(x) = (x, 0.5)T , R(v, w) = v).
All parameter values are as in the unrotated system (4.1), otherwise. The error Ej ,
defined in (4.6), is now much larger: it is of order 1 for tskip = 0; see Figure 4.1(f). In
the implicit framework the error decreases with increasing healing time tskip down to
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10−8 for tskip = 20. Note again that the slope of the curves is smaller for higher-order
derivatives as predicted by the estimate (3.13) in Theorem 3.3. The error for the flow
is bounded from below again by the accuracy of the asymptotic expansion for Φ∗, the
accuracy of the Newton iteration and round-off error caused by the finite difference
approximations of ∂j2Φ∗ and ∂j2Φtskip .

5. Application: stochastic dynamics. A common area where equation-free
methods are applied are multi-particle systems where slow dynamics emerges for
macroscopic (typically averaged) quantities, e. g. [29, 5]. More precisely, the macro-
scopic quantities are assumed to satisfy a low-dimensional stochastic differential equa-
tion (SDE). For example, the SDE could be assumed to be of the form dx = f(x) dt+
σ dWt, where the noise term σ dWt approximates the microscopic fluctuation as white
noise and the deterministic part f(x) is the systematic average drift of the macroscopic
quantities. Givon et al. [17] review rigorous results concerning dimension reduction
of SDEs.

Typically, a stochastic simulation is performed not just once, but for an ensemble
of initial conditions and realizations (as part of a Monte Carlo simulation). At the
level of an SDE, an ensemble of initial conditions corresponds to (a sampling of) an
initial distribution density ρ(x). In this section we restrict ourselves to the study of
a scalar SDE of the form

(5.1) dQ = −V ′(Q) dt+ σ dWt,

where Wt is a Wiener process, an example for which explicit equation-free methods
have been thoroughly analyzed by Barkley et al. [5]. As in [5], we set the noise
strength σ equal to 1 in (5.1) without loss of generality. The potential

(5.2) V (Q) =
Q4

4
− µQ2

2
+ νQ,

forms for µ > 0 a double well with two local minima Q± and a local maximum Qs (see
lower panel of Figure 5.1 for a graph of V ). The parameters µ and ν determine the
depth and the asymmetry of the double-well potential, respectively. We use µ = 6,
ν = 0.3 such that Q− < Qs < Q+ and the well around Q− is deeper than the well
around Q+. The microscopic simulation is a Monte Carlo simulation of (5.1) starting
from initial (ensemble) density ρ0(Q) of initial conditions. Thus, the phase space is
the space of possible initial distributions in Q, which has dimension D equal to infinity.
Strictly, the infinite-dimensional case is outside of the scope of Theorem 3.3. However,
the observations to follow agree with the convergence predicted by the theorem for
reasons that will be discussed after defining lifting, evolution and restriction. We will
make the connection to multi-particle systems or high-dimensional SDEs in section 6.

5.1. Lifting, evolution and restriction for distributions. The evolution of
the probability density function (pdf) ρ(Q, t) for the realization of (5.1) is determined
by the Fokker-Planck equation with σ = 1,

(5.3) ∂tρ = −∂Q(V ′(Q)ρ) +
1

2
∂QQρ.

The right-hand side of (5.3) is linear, of the form

(5.4) Lρ = −∂Q(V ′ρ) +
1

2
∂2
Qρ,
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Fig. 5.1. (Top) Dynamics of distributions for SDE model (5.1) for µ = 6, ν = 0.3, σ = 1
(sampled from N = 10000 realizations). On the microscopic level of distributions, the Gaussian
distributed initial condition (t = 0) with mean 1.5 and variance 3.5 converges to a bimodal distri-
bution by t = 10. Afterwards, the transition to the stationary distribution happens (see mode 1 in
Figure 5.2) on a slow time scale corresponding to the second eigenvalue λ2 ∼ 10−8 of the operator
L given in (5.4). (Bottom) Shape of potential well V (Q), as given in (5.2).

Fig. 5.2. First four eigenfunctions (left panel) and first three L2-adjoint eigenfunctions (right
panel) of the differential operator L, defined in (5.4) and computed with chebfun [10, 14]. The
stationary solution is shown in blue for λ1 = 0 as mode 1 in the left panel. The asymmetric
eigenfunction corresponding to λ2 (mode 2) is responsible for the transportation of mass from one
well to the other. Eigenvalues λk are given in (5.14): (0,−8.63 · 10−8,−5.71,−10.3). Parameters:
µ = 6, ν = 0.3, σ = 1. The approximation of the density by Chebyshev polynomials is chosen
automatically by chebfun: the degree is 394 for the left panel and 941 in the right panel.

where the operator L : H2
1(R;R) 7→ L2

1(R;R) is self-adjoint with respect to the scalar
product

(5.5) 〈ρ1, ρ2〉1 =

∫
R

ρ1(Q)ρ2(Q)

ϕ1(Q)
dQ where ϕ1(Q) =

exp(−2V (Q))∫
R exp(−2V (q)) dq

.

The space L2
1(R;R) is in our case the space of all measurable functions u : R → R

with
∫
R u

2(x)/ϕ1(x) dx < ∞ (a subset of L2(R;R), which has the scalar product

〈ρ1, ρ2〉 =
∫
R ρ1(Q)ρ2(Q) dQ). The space H`1(R;R) is the space of all u ∈ L2

1(R;R)

with u(j) ∈ L2
1(R;R) for all j ≤ `. The spectrum of L is real and consists of point

spectrum only. It has the form 0 = λ1 > λ2 > . . . with eigenvectors ϕj(Q) ∈ H2
1(R;R)

that can be orthonormalized with respect to 〈·, ·〉1. The function ϕ1 is the eigenvector
for the trivial eigenvalue λ1 = 0 (which is present due to the preservation of total
probability

∫
R ρ(Q, t) dQ along trajectories). The spectrum and the corresponding

eigenfunctions ϕj are shown in Figure 5.2 (left panel), together with the L2-adjoint
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eigenfunctions ϕj/ϕ1 (right panel). A solution of the Fokker-Planck equation (5.3)
can be expanded in the eigenfunctions of L with time-dependent coefficients aj(t):

(5.6) ρ(Q, t) =

∞∑
j=1

aj(t)ϕj(Q).

The coefficients satisfy ȧj(t) = λjaj(t) for all j, and the series
∑∞
j=1 a

2
j converges for

all t > 0. The orthonormality of the basis {ϕj : j ≥ 1} with respect to 〈·, ·〉1, defined
in (5.5), implies that∫ ∞

−∞
ϕ1(Q) dQ = 1,

∫ ∞
−∞

ϕj(Q) dQ = 0 for j ≥ 2.(5.7)

Since λ1 = 0, a1(t) equals a1(0) for all times t ≥ 0. One usually chooses a1(0) = 1 such
that ρ(Q, t) converges to the stationary density ϕ1(Q) for t→∞. While Theorem 3.3
was only formulated for flows in RD, the linearity of L implies that statements identical
to Theorem 3.3 can be made for the PDE (5.3). Instead of Fenichel’s Theorem on
invariant manifolds in ODEs [15] (persistence and regularity of invariant manifolds and
fiber projections) we rely on the spectral mapping properties for the linear operator L.
For any chosen dimension d of the slow variables, the slow manifold C is the subspace
spanned by ϕ1, . . . , ϕd. Instead of the stable fiber projection in the finite-dimensional
case, we have the linear spectral (for L) projection g : L2

1(R;R) 7→ C (M is also
linear, such that we write M(t)ρ and gρ) which is explicitly known in terms of the
eigenvectors of L:

(5.8) g : L2
1(R;R) 3 ρ 7→ gρ =

d∑
j=1

〈ϕj , ρ〉1ϕj ∈ L(ϕ1, . . . , ϕd) ⊂ L2
1(R;R).

With this definition of C and g the decay and growth properties of the evolution map
M replacing Assumption 3.1 are

‖M(t)|C‖ ≤ C exp(λdt) for all t ≤ 0, ‖M(t)|C‖ ≤ C for all t ≥ 0(5.9)

‖M(t)−M(t) ◦ g‖ ≤ C exp(λd+1t) for all t ≥ 0
(5.10)

and some constant C, such that dtan = −λd, dtr = −λd+1. The approximation
statement of Theorem 3.3 then follows immediately from error estimates for finite-
dimensional matrices and will be derived after the definition of the restriction and
lifting operators. The lifting and restriction operators are chosen to map from a
macroscopic description of ρ, for example, by moments, to the full density ρ and
vice versa. In particular, we will investigate the behaviour of implicit equation-free
methods for d = 3 using the following restriction and two different lifting operators:

R : L2
1(R;R) 7→ Rd R ρ =

(∫
R
Qk−1ρ(Q) dQ

)
k=1,...,d

,(5.11)

Llin : Rd 7→ L2
1(R;R) Llin(x)(Q) =

d∑
j=1

xjρj(Q),(5.12)

LGauss : R3 7→ L2
1(R;R) LGauss(x)(Q) =

x1√
2πx3

exp

(
−(Q− x2)2

2x3

)
.(5.13)
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Thus, R projects a density onto its first d moments (counting from the zeroth mo-
ment, which is preserved by M since λ1 = 0). In a Monte-Carlo simulation the zeroth
moment would correspond to the (possibly scaled) number of realizations. The func-
tions ρj in the definition (5.12) of Llin are arbitrary in L2

1(R;R) with
∫
R ρj(Q) dQ = 1,

which ensures that
∫
R Llin(x)(Q) dQ =

∑d
j=1 xj is conserved under M(t). For LGauss,

the x1 component is preserved under M(t) and becomes the first component of R
such that always [RM(t)LGauss x]1 = x1.

For the combination of Llin and R all components of the lift-evolve-restrict map
P (t; ·) = R◦M(t; ·) ◦ L and its exact counterpart P∗(t; ·) = R◦M(t; ·) ◦ g ◦ L from
section 3 are linear such that we can reduce the study of convergence for arbitrary
coordinates x to convergence estimates for matrices.

The combination of LGauss and R was studied in detail in [5] for explicit equation-
free methods, where the authors observed that the nonlinearity of LGauss introduced
a nonlinearity in the moment map and that the resulting flow depended qualitatively
on the choice of the healing time tskip. We will demonstrate that for LGauss the
implicitly defined flow ΦGauss,tskip converges to a nonlinear transformation of the linear
flow M(t)|C . Since the x1 component does not change under P (t; ·) and P∗(t; ·) for
L = LGauss, it can be ignored, making the choice of LGauss and R identical to the
situation studied in [5].

We use the MATLAB [21] package chebfun [10, 14] to numerically compute the
spectrum and eigenfunctions of L, the flow M , the projection g, restriction and lifting
for the example potential V given in (5.2). The package chebfun uses Chebyshev
polynomials of adaptive degree to approximate arbitrary functions on finite intervals
to optimal precision. For a typical result, as shown in Figure 5.2 the degree is larger
than 100 (394 for the left panel, 941 for the right panel). The numerically computed
spectrum of L is

spec(L) = (λ1, λ2, λ3, λ4, . . .) ≈ (−2.37 · 10−9,−8.63 · 10−8,−5.71,−10.3, . . .)(5.14)

for V with the parameters

µ = 6, ν = 0.3.(5.15)

Note that λ1 = 0 is the correct value for the first eigenvalue on an infinite domain. In
numerical computations we choose a bounded domain [−10, 10] with Dirichlet bound-
ary conditions, leading to a small probability of escape from the domain. The spec-
trum and the corresponding eigenfunctions ϕj are shown in Figure 5.2. The eigen-
vector ϕ1 corresponds to the stationary solution of the Fokker-Planck equation and
ϕ2 is the mode representing escape from one well to another.

5.2. Convergence for the linear lifting operator Llin with d = 3. We
express the maps P∗(t; ·) and P (t; ·) in terms of M , the eigenvectors ϕj and the scalar
product 〈·, ·〉1, initially for a general dimension d. The exact macroscopic flow Φ∗ is
defined using the map P∗(t; ·) in (3.9), and the approximate macroscopic flow Φtskip
is defined using the map P (t; ·) in (3.11). The definitions (5.11) for R and (5.12) for
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Llin imply

[Plin,∗(t)x]k = [RM(t)gLlin x]k =

d∑
`, j=1

exp(λ`t)

∫
R
Qk−1ϕ`(Q) dQ〈ϕ`, ρj〉1xj(5.16)

[Plin(t)x]k = [RM(t)Llin x]k =

d∑
j=0

[∫
R
Qk−1[M(t)ρj ](Q) dQ

]
xj(5.17)

where k = 1, . . . , d. Using the d× d matrices (k, `, j = 1, . . . , d)

(Tlin)`,j = 〈ϕ`, ρj〉1, Md(t) = diag [exp(λ`t)`=1,...,d] , (Rd)k,` =

∫
R
Qk−1ϕ`(Q) dQ.

(5.18)

we can express the map Plin,∗(t) and the exact slow flow Φlin,∗(δ) in the form

Plin,∗(t)x = RdMd(t)Tlinx(5.19)

Φlin,∗(δ)x = Plin,∗(tskip)−1Plin,∗(tskip + δ) = T−1
lin Md(δ)Tlinx.(5.20)

General Assumption 3.2 on transversality of R and L for Theorem 3.3, when ap-
plied to the SDE (5.1) and R and Llin, demands the regularity of the matrices Rd
and Tlin. If both matrices are indeed regular then Plin,∗ is invertible: Plin,∗(t)

−1 =
T−1

lin Md(−t)R−1
d . Thus, the claim of Theorem 3.3 can be simplified to a statement

about perturbations of matrices using the quantities

n(t) := ‖Plin,∗(t)
−1‖ ≤ ‖T−1

lin ‖‖R
−1
d ‖ exp(−λdt) for t ≥ 0, and

(5.21)

r(t) := ‖Plin,∗(t)− Plin(t)‖ ≤ C exp(λd+1t) for all t ≥ 0 and a fixed C > 0.
(5.22)

The estimate for r(t) follows from (5.16) and (5.17):

∣∣[Plin(t)x]k − [Plin,∗(t)x]k
∣∣ =

∣∣∣∣∣∣
d∑
j=0

[∫
R
Qk−1

[
M(t)

[
ρj −

d∑
`=1

〈ϕ`, ρj〉ϕ`

]]
(Q) dQ

]
xj

∣∣∣∣∣∣
≤ C exp(λd+1t)|x|.

The integrand contains the spectral projection ρ 7→ ρ−
∑d
`=0〈ϕ`, ρj〉ϕ` onto the com-

plement of the space spanned by ϕ1, . . . , ϕd. On the complement of L({ϕ1, . . . , ϕd})
the evolution operator M(t) decays exponentially with rate λd+1 in time. Together
with the boundedness of R and the spectral projection, this decay of M(t) implies
estimate (5.22). Since Plin(t; ·) is linear, the approximate flow map Φlin,tskip(δ) is given
by

(5.23) Φlin,tskip(δ) = Plin(tskip)−1Plin(tskip + δ)

assuming the inverse of Plin(tskip) exists (all involved matrices have dimension d× d).
The linear expressions for the exact flow Φlin,∗, (5.20), and Φlin,tskip , (5.23), imply
(5.24)

‖Φlin,∗(δ)− Φlin,tskip(δ)‖ ≤ n(tskip)

1− n(tskip)r(tskip)
[r (tskip) ‖Φlin,∗(δ)‖+ r(tskip + δ)] .
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(b) Phase portrait of Φlin,∗

Fig. 5.3. Analysis for Llin and Φlin,tskip with d = 3. (a) Matrix norm of Φlin,tskip (δ)−Φlin,∗(δ)

and smallest singular value of P (tskip), compared to theoretical exponential estimates. (b): the plot
shows trajectories of Φlin,∗ in the (x1, x2)-plane starting on a grid of initial points. The coloring
indicates the time along the trajectory (in logarithmic scale). The black point is the fixed point
(see text). Parameters: δ = 0.1, ρj (j = 1 . . . 3) are Gaussians with means −1.5, −0.5 and 1 and
variance 1, shape parameters of potential V are µ = 6, ν = 0.3, see also (5.14) and (5.15).

The exponential estimates r(t) ≤ C exp(λd+1t) in (5.22) and n(t) ≤ exp(−λdt) in
(5.21) immediately imply the statement of Theorem 3.3 (given that Φlin,∗ is globally
bounded).

The semilogarithmic plot in Figure 5.3(a) shows the difference between Φlin,tskip(δ)
and Φlin,∗(δ) (blue line with circles) for d = 3, for a linear basis of three Gaussians ρj
(with variance 1 and means −1.5, −0.5 and 1), δ = 0.1 and the double-well potential
well V with parameters µ = 6, ν = 0.3. The decay rate inside the slow manifold C =
span(ϕ1, ϕ2, ϕ3) is dtan = −λ3 ≈ 5.71 and the attraction rate toward C is dtr = −λ4 ≈
10.3. Figure 5.3(a) also shows the two components of the error Φlin,tskip(δ)−Φlin,∗(δ)
and their theoretical estimates:
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1. (In yellow) The difference r(tskip) between Plin(tskip) = R◦M(tskip)◦Llin and
Plin,∗(tskip) = R◦M(tskip)◦g◦Llin = RdMd(tskip)Tlin, which decays according
to the attraction toward C until it reaches the limits of numerical accuracy of
chebfun (∼ 10−8): ‖Plin(tskip)− Plin,∗(tskip)‖ ∼ exp(−dtrtskip).

2. (In red) The norm n(tskip) of the inverse of Plin(tskip), which grows like
exp(dtantskip). Figure 5.3(a) shows the inverse (the minimal singular value).

The overall error (5.24) is approximately the product of these two components, which
is proportional to exp((dtan−dtr)tskip) (shown as a blue dashed line in Figure 5.3(a)).
In particular, the combination of ‖Plin,∗(tskip)−1‖ ∼ exp(dtantskip), ‖Plin(tskip) −
Plin,∗(tskip)‖ ∼ exp(−dtrtskip) and dtan < dtr implies that Plin(tskip) is invertible for
sufficiently large tskip and that ‖Plin(tskip)−1‖ ∼ exp(dtantskip).

Figure 5.3(b) shows a phase portrait of the exact flow in the coordinates in

domLlin. Since Φlin,∗ and Φlin,tskip both preserve the quantity
∑d
j=1 xj (which cor-

responds to
∫
R Llin(x)(Q) dQ), we set x3 = 1 − x1 − x2 in the initial values for the

sample trajectories, keeping
∑d
j=1 xj = 1 along trajectories without loss of general-

ity. This leads to an affine flow in the (x1, x2)-plane with a non-trivial fixed point
(shown in black in Figure 5.3(b)). The coloring along the sample trajectories illus-
trates the extreme difference in the time scale along the directions corresponding to
λ2 (≈ −10−7; escape between wells), mostly evolving on time scales � 104 (dark red
in Figure 5.3(b)), and λ3 (≈ −5.71; relaxation into the nearest well), mostly decaying
on time scale of order 1 and less (blue and light blue in Figure 5.3(b)).

Remark: Densities with sign changes in subsection 5.2. The phase portrait Fig-
ure 5.3(b) of the exact flow Φlin,∗ includes coordinates x = (x1, x2, x3) where the lifted
initial density Llin(x) has sign changes. This is not unphysical. If one performs Monte
Carlo simulations with ensembles on the example with the lifting operator Llin(x),
one would run a Monte Carlo simulation on an ensemble for each of the three initial
densities ρj . Then one would sum the densities at the end of the simulation with the
weights xj (j = 1, . . . , 3). These weights can be negative to get a combined density.

Fig. 5.4. (a) Contour curves in coordinates in domLGauss and condition of ∂TGauss =
∂[gLGauss]. The piece of trajectory from x to y∗ = ΦGauss,∗(δ;x) with δ = 0.1 is used for con-
vergence analysis in subsection 5.3. (b) Profile of ϕ3(Q)/ϕ1(Q) in Q. Note that away from its peak
around 0, the profile is slightly negative (see zoom in panel (c)). Parameters: µ = 6, ν = 0.3.
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5.3. Convergence for the nonlinear lifting operator LGauss. The exact
and approximate lift-evolve-restrict maps for lifting with a Gaussian distribution of
mass x1, mean x2 and variance x3, of the form LGauss(x) = q 7→ x1 exp(−(q −
x2)2/(2x3))/

√
2πx3, are given by

PGauss,∗(t;x)k = [RM(t)gLGauss(x)]k

=

3∑
`=1

exp(λ`t)

∫
R
Qk−1ϕ`(Q) dQ〈ϕ`,LGauss(x)〉1(5.25)

PGauss(t;x)k = [RM(t)LGauss(x)]k =

∫
R
Qk−1M(t)LGauss(x) dQ,(5.26)

where k = 1, . . . , d (d = 3). The flow M(t) preserves the integral of the initial
distribution such that PGauss(t;x)1 = x1 and PGauss,∗(t;x)1 = x1. Thus, we can fix
x1 = 1 without loss of generality and focus on the dynamics in the (x2, x3)-plane in
domLGauss.

Phase portrait of the exact flow ΦGauss,∗. The exact flow ΦGauss,∗ on C in the
coordinates of domLGauss is a nonlinear transformation of the linear map Md(t) =
diag

[
exp(λ`t)

`=d
`=1

]
: Rd 7→ Rd, defined in (5.18) (with d = 3). We call the nonlinear

transformation

TGauss : R3 7→ R3 TGauss(x)k = 〈ϕk,LGauss(x)〉1 (k = 1, . . . , 3).(5.27)

In particular TGauss(x)1 = x1 by construction. Using TGauss, Md and the matrix Rd
(defined in (5.18)), the map PGauss,∗(t;x), and the exact flow ΦGauss,∗ are given by
(using the notation T−1

Gauss for the inverse of the nonlinear map TGauss)

PGauss,∗(t;x) = RdMd(t)TGauss(x),

ΦGauss,∗(δ;x) = T−1
Gauss(Md(δ)TGauss(x)),

(5.28)

where all involved quantities are maps from R3 to R3. Since the map TGauss is
nonlinear, it is not clear if the inverse exists for all x ∈ R3, or if it is unique where
it exists. Figure 5.4(a) shows the contours of TGauss(x)2 (in black) and TGauss(x)3

(in blue; remember that TGauss(x)1 = x1), and the norm of [∂TGauss(x)]−1 as color
shading (in logarithmic scale). Since the difference in time scale between motion
along ϕ2 and motion along ϕ3 is large (0 > λ2 � λ3), the flow ΦGauss,∗ follows the
black curves in the direction of the arrow until it reaches the zero-level of TGauss(x)3

(slightly wider blue curve, only visible close to the bottom of Figure 5.4(a)).
Near-singularity of TGauss. The zero curve {x : TGauss(x)3 = 0} in the (x2, x3)

plane (wide blue in Figure 5.4(a)) is given by
∫
R LGauss(x)(Q)ϕ3(Q)/ϕ1(Q) dQ = 0,

where LGauss(x) is a Gaussian of mean x2 and variance x3 and ϕ3(Q)/ϕ1(Q) is shown
in Figure 5.4(b,c). From the profile of ϕ3/ϕ1 it is clear that the zero-level forms a
single curve connecting the two pieces of the wide blue curve {x : TGauss(x)3 = 0}
visible in Figure 5.4(a). However, this curve has a large radius (passing through the
region x3 � 1). For example, there exists a Gaussian u = LGauss(x) with mean
x2 = 0 and large variance x3 such that TGauss(x)3 = 0, because ϕ3/ϕ1 is negative
everywhere outside its peak, but the negative values have small modulus (note the
scaling of the vertical axis in the zoom of ϕ3/ϕ1 in Figure 5.4(c)). The fixed point of
x 7→ ΦGauss,∗(δ;x) (assuming x1 = 1) is the intersection of the two zero-level curves
(not visible in Figure 5.4(a) as it has large x3). The color shading in Figure 5.4(a)
indicates that the nonlinear transformation TGauss is nearly singular close to the line
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x3 = 0, because the L2-adjoint modes ϕ2/ϕ1 and ϕ3/ϕ1 are both nearly constant
away from the region around Q ∈ [−2, 2] (see Figure 5.2, right panel) such that, when
inverting TGauss, the mean x2 is very sensitive for small changes in the coefficients for
the L2-adjoint modes ϕ2/ϕ1 and ϕ3/ϕ1 .

Components of error ΦGauss,tskip − ΦGauss,∗. We perform a detailed convergence
analysis along the example trajectory of the exact flow ΦGauss,∗ shown in Figure 5.4(a):
y∗ = ΦGauss,∗(δ;x), where x = (1, 0.5, 2)T and δ = 0.1 (thus, y∗ ≈ (1, 0.8459, 6.4556)T ).
To understand the factors entering the practically achievable lower limit of the error

Fig. 5.5. Convergence analysis along trajectory y∗ = ΦGauss,∗(δ;x), shown in Figure 5.4 (a).
Parameters: µ = 6, ν = 0.3, δ = 0.1, x = (1, 0.5, 2)T .

‖ytskip−y∗‖ = ‖ΦGauss,tskip(δ;x)−ΦGauss,∗(δ;x)‖, we consider again the identity (3.16)
used in the proof of Theorem 3.3:

(5.29) P∗(tskip; ytskip) = P∗(tskip; y∗)+

[P∗(tskip; ytskip)− P (tskip; ytskip)] + [P (tskip + δ;x)− P∗(tskip + δ;x)],

but re-arrange it using the concrete expressions for PGauss,∗ and PGauss:
(5.30)
RdMd(tskip)TGauss(ytskip) = RdMd(tskip)TGauss(y∗) . . .

+ [RdMd(tskip)TGauss(ytskip)−RM(tskip)LGauss(ytskip)]

+ [RM(tskip + δ)LGauss(x)−RdMd(tskip + δ)TGauss(x)]

Since the matrices Rd and Md(tskip) are invertible, we can apply their inverses to both
sides in (5.30). For a general distribution ρ, the composition of R−1

d and R

TRρ : L2
1(R;R) 7→ R3 TRρ = R−1

d R ρ = R−1
d

[∫
R
Qk−1ρ(Q) dQ

]
k=1,2,3

is a projection onto the slow manifold C in the coordinates (ϕ1, ϕ2, ϕ3). Furthermore,
the nonlinear map TGauss is locally invertible in y∗ (and, hence, also in ytskip , if ytskip
is near y∗). Its Jacobian is invertible in y∗ with a moderate norm of its inverse
‖[∂TGauss(y∗)]

−1‖ ≈ 10 for the chosen y∗. Hence, the identity (5.30) can be written
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in the form

TGauss(ytskip) = TGauss(y∗) + . . .

TGauss(ytskip)−Md(−tskip)TRM(tskip)LGauss(ytskip)︸ ︷︷ ︸
res(ytskip)

+ . . .(5.31)

Md(−tskip)TRM(tskip + δ)LGauss(x)−Md(δ)TGauss(x)︸ ︷︷ ︸
resδ(x)

.

The two residual terms on the right-hand side, labelled res(ytskip) and resδ(x), are
the two contributions to the error, before it gets amplified by a moderate factor
(‖[∂TGauss(y∗)]

−1‖ ≈ 10) when inverting TGauss. The spectral properties of the flow
M ensure that

Md(t)TGauss(η)− TRM(t)LGauss(η) ∼ exp(−dtrt),

where dtr = −λ4 ≈ 10.3. Applying this estimate to η = ytskip and t = tskip,
and to η = x and t = tskip + δ gives the asymptotics ∼ exp(−dtrtskip) in tskip for
Md(tskip) res(ytskip) and Md(tskip) resδ(x), shown in Figure 5.5 (red and blue curves
with circles). The healed residuals Md(tskip) res(ytskip) and Md(tskip) resδ(x) indeed
decay with rate dtr until computational errors for computing the distributions dom-
inate (in this case 10−8). The matrix Md(tskip)−1 = Md(−tskip) has norm of or-
der exp(dtantskip) (where dtan = −λ3 ≈ 5.71; see grey dashed line sloping up-
ward in Figure 5.5) such that the residuals res(ytskip) and resδ(x) are of order ∼
exp((dtan−dtr)tskip) (blue and red curves with + marks in Figure 5.5). The residuals
indeed decrease with rate dtr − dtan for increasing tskip until the amplification of the
computational errors by exp(dtantskip) starts to dominate (at tskip ≈ 2). The true
error ytskip − y∗ (shown in black in Figure 5.5) is then amplified approximately by
the norm of ‖[∂TGauss(y∗)]

−1‖ ≈ 10, because the residuals res and resδ occur on the
manifold C (in the coordinates (ϕ1, ϕ2, ϕ3)), while the error ytskip − y∗ is defined in
domL. The relation between the error ytskip − y∗ and the residual errors is indepen-
dent of tskip. Overall, the error ytskip − y∗ decays with rate dtr − dtan asymptotically
for increasing tskip, but the computational error grows with rate dtan. The optimal
healing time tskip is when both errors are of the same order of magnitude.

The identity (5.31) becomes a nonlinear fixed-point problem after applying T−1
Gauss,

for which the right-hand side is a contraction for sufficiently large tskip (see the proof
of Theorem 3.3). For Figure 5.5 we applied this fixed-point iteration. The final fixed-
point iteration correction (shown as a yellow curve in Figure 5.5 is always smaller
than the error ytskip − y∗.

5.4. The size of computational errors in ensemble computations. The
results shown in Figures 5.3(a) and 5.5 show the qualitative behaviour of implicit
lifting for increasing tskip. Two sources contribute to the overall error. One source is
the mismatch between the trajectory started from the lifted point and the projected
(along the stable fiber) trajectory on the slow manifold. The size of this contribution
is estimated in Theorem 3.3 as decaying with rate dtr−dtan with increasing tskip (also
observed in Figures 5.3(a) and 5.5). The other source is the limited accuracy in the
computations of the lifting L, the microscopic flow M and the restriction R. Errors
introduced from this limited accuracy grow with rate dtan for increasing tskip. The
analysis in Figures 5.3(a) and 5.5 illustrates the trade-off between these two sources
of error when the computational error is small (≈ 10−8, using chebfun [10, 14]).
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If the microscopic flow M describes a multi-particle or high-dimensional stochastic
system and is estimated using ensembles of realizations then the computational error
of the flow estimate (and, possibly, the computation of L and R) is determined by
the ensemble size N . This error decreases asymptotically like 1/

√
N for increasing

N , unless one is able to apply variance reduction techniques (see, for example, [3]
for a technique to reduce noise in the computations of Jacobians needed to solve
nonlinear systems). In this section we demonstrate that the error behavior can be
expected to be qualitatively the same as in Figures 5.3(a) and 5.5, but with stricter
limitations on tskip due to larger computational errors in L, R, and the flow M . To
keep the computations simple and comparable to the previous subsection, we perform
a Monte-Carlo simulation directly for the SDE (5.1).

Figure 5.6(a) shows the overall behaviour of the error when performing compu-
tations based on random ensembles of finite size N , using the lifting operator LGauss,
based on Gaussians. For an ensemble size N , mean Q̄ and we create a random set of
initial conditions

(5.32) [L(N, Q̄, varQ)]n = Q̄+
√

varQη, n = 1, . . . , N

where η ∼ N (0, 1) is a random variable drawn from a standard normal distribution
for each n. An ensemble of N realizations at positions Qn is restricted according to

(5.33) R
(
(Qn)Nn=1

)
k

=

N∑
n=1

Qk−1
n (k = 1, 2, 3).

Similar, to the definitions (5.11) and (5.13), the first component of the argument to
L and of the output of R is the number of realizations, which is preserved. In order
to solve (5.1) numerically, we use the Euler-Maruyama scheme

(5.34) Qn(t+ h) = Qn(t) + f(Qn(t))h+
√
hσξn(t) (n = 1, . . . , N),

where h = 0.01 is the step size, f = −∂QV and ξn ∼ N (0, 1) is standard normal
random noise that is uncorrelated, i. e. 〈ξn(t)ξn(t′)〉 = δ(t− t′).

The error for each tskip in Figure 5.6(a) was estimated by comparing the value
of ΦGauss,tskip(δ;x) to the value ΦGauss,tmax

(δ;x) for the largest tskip (called tmax,
equalling 1). Thus, the value of tskip at which the error starts to grow and the growth
rate may not have been captured accurately. However, we observe an exponential
decay with increasing tskip over approximately two orders of magnitude and the more
stringent limitation on tskip, as the error stops decreasing at tskip ≈ 0.6.

Two problems limit the computational accuracy of function evaluations.
1. In Monte Carlo simulations with ensemble size N the evaluation of the macro-

scopic lift-evolve-restrict map P (t; ·) of the dynamics is noisy in (Q̄, varQ).
This is due to the inherent noise in (5.1) and due to the noise in the lifting
procedure (5.32). Hence the evaluation of P with the same input parameters
might yield different outputs. The result of P is a random variable with an
ensemble-dependent distribution (see Figure 5.6(b), where the distribution of
the second component (the mean) of P (1; (N,−0.5, 0.2)) is shown for a range
of N). The standard deviation of P decreases with the ensemble size like
∼ 1/

√
N .

2. Function evaluations for large varQ become computationally difficult since a
large varQ implies sampling of trajectories far away from the minima of the
potential. Since the potential is steep away from the minima, the drift forces
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Fig. 5.6. (a) Error analysis for N = 107, h = 10−2, µ = 6, ν = 0.3, σ = 1, δ = 0.1, similar to
Figure 4.1(f) for two different starting values (N, Q̄, varQ) = (107, 0.5, 2) and (107,−0.5, 0.2). The
initial error is larger for the value with a larger variance. With increasing tskip, the error shrinks
with the same exponential rate for both initial conditions. (b) Distribution of function evaluations
of the lift-evolve-restrict map R(M(t;L(Q̄, varQ)))2/N for t = 1 and various ensemble sizes N and
(Q̄, varQ) = (−0.5, 0.2). Inset: the uncertainty of the function evaluation scales as ∼ 1/

√
N .

V ′ become large, which results in stability problems of the numerical scheme
(5.34) for a fixed step size h.

When solving P (tskip; y) = P (tskip + δ;x) for y in the analysis in Figure 5.6(a) we
use a Newton iteration with damping γ = 0.5 on the macroscopic level with tolerance
tol = 5 · 10−2 where Jacobians are computed by a central finite-difference scheme
with ∆Q̄ = ∆ varQ = 5 · 10−2. The ensemble size is N = 107. The level of the
minimal error is limited by the finite ensemble size N and the accuracy of function
evaluations and approximations of the Jacobian in the Newton iterations (see [3] how
the accuracy of the Jacobians can be improved).

6. Discussion.

6.1. General estimate for the influence of evaluation errors. While the
theoretical convergence result in Theorem 3.3 appears to suggest that a larger tskip

always leads to a smaller error, the demonstrations for the Michaelis-Menten kinetics
model in section 4 and the SDE in section 5 illustrate that there is a trade-off and,
hence, an optimal value for tskip in practice. One source for the difference between
the estimates of Theorem 3.3 and numerical observations are numerical errors in the
evaluation of lifting L, evolution M(t; ·) and restriction R. The effect of these errors
grow along trajectories inside the slow manifold C if the vector field tangent to C
has non-zero expansion rates forward or backward in time. This becomes clear when
looking at the arguments in the proof of Theorem 3.3. The approximate solution ytskip
is the fixed point of the map (see Equation (A.9))

(6.1) y 7→ P∗(tskip; ·)−1
(
P∗(tskip; y∗)+

[P (tskip; y)− P∗(tskip; y)] + [P (tskip + δ;x)− P∗(tskip + δ;x)]
)

.

According to Theorem 3.3, ytskip − y∗ ∼ exp((dtan−dtr)tskip), where dtan is defined as

max{d+
tan, d

−
tan}, the maximum of the forward (d+

tan) and backward (d−tan) expansion
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rate of the flow M |C tangential to C, and dtr is the rate of attraction transversal to C.
However, if we take into account evaluation errors, we have to distinguish between the
exact and approximate operators. That is, P∗(t; ·) equals R◦M(t; ·)|C ◦ g ◦ L (recall
that g is the stable fiber projection) and P (t; ·) equals R∆ ◦M∆(t; ·) ◦ L∆ where we
use the subscript ∆ to indicate that the operator is affected by small errors. For L∆

and R∆ this means simply that they are perturbations of L and R of size ∆. The
evaluation error in M along trajectories in C causes errors of size

‖M(t; ·)|C −M∆(t; ·)|C‖ ∼ ∆ exp(d+
tant) for t ≥ 0,

‖M(t; ·)|C −M∆(t; ·)|C‖ ∼ ∆ exp(−d−tant) for t < 0.

These errors in L∆, R∆ and M∆(t; ·) are all part of the term P (tskip + δ;x) in (6.1))
such that the error grows for increasing tskip at the rate

‖P (tskip + δ;x)− P∗(tskip + δ;x)‖ ∼ ∆ exp(d+
tantskip),

which gets then amplified by the expansion rate of M(−tskip; ·)|C when applying
P∗(tskip; ·)−1. Thus, there will be an error between the exact fixed point of the map
(6.1) and the fixed point with evaluation errors. This error is of order ∆ exp((d+

tan +
d−tan)tskip), which is growing exponentially in tskip. This is visible in all computational
results:

• In the Michaelis-Menten kinetics model in section 4 the error ∆ is of order
10−10 and dtan is of order ε (which is 10−2) such that the growth of the error
with tskip is not visible in the range of tskip between 0 and 30 in Figures 4.1(e)
and 4.1(f).

• For the stochastic differential equation in section 5, d+
tan is zero and d−tan =

−λ3 ≈ 5.71. For Figures 5.3(a) and 5.5 we computed the evolution of den-
sities directly using the Fokker-Plank equation and chebfun such that the
evaluation error ∆ is of the order 10−8 (visible as the lower bound on the
residuals ‖Plin(tskip)−Plin,∗(tskip)‖ in Figure 5.3(a) and in the residuals after
healing in Figure 5.5). Thus, the overall influence of the evaluation error is of
order ∆ exp(tskipd

−
tan). The amplification factor reaches ∼ 105 for tskip = 2.

In Figure 5.3(a) evaluation errors dominate only from tskip ≈ 3, while in
Figure 5.5 they dominate from tskip ≈ 2.5.

• In Figure 5.6(a) the growth rate of the evaluation error is the same as in
Figure 5.5, but the basic evaluation error of a single time step of M∆(t, ·) and
the lifting L∆ is larger (as they are generated from ensembles): ∆ ∼ 10−3.5

for ensemble size N = 107. Thus, the effects of evaluation error start to
dominate already for tskip ≈ 0.7. With smaller, more realistic, ensemble sizes
the restriction on tskip posed by evaluation errors will be even more severe.
Since the necessary length of tskip to reduce the projection error ytskip − y∗
(from Theorem 3.3) is dictated by d−tan − dtr, we have a general approximate
optimal healing time for positive evaluation errors ∆ of the order

tskip ∼
− log ∆

d+
tan + dtr

,

resulting in an optimal error of the order

max
{

∆e(d+tan+d−tan)tskip , e(d−tan−dtr)tskip
}
∼ ∆p with p =

dtr − d−tan

dtr + d+
tan

.
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In the limit of large time scale separation (d±tan/dtr → 0) the power p of the
error reaches 1 and the optimal tskip is of order − log ∆/dtr.

6.2. Consequences for equation-free analysis of stochastic systems. The
lift-evolve-restrict map PGauss(t; ·) in section 5 reduced the SDE dQ = −V ′(Q) +
σ dWt (or, more precisely, its Fokker-Planck equation) to the slow manifold (a linear
subspace) spanned by its first 3 modes. Barkley et al [5] observed that the map
PGauss(t; ·) (called moment map in [5]) is nonlinear and, hence, suspected that the
nonlinearity of PGauss may be the object of interest for nonlinear analysis (such as
finding multiple equilibria, bifurcations under parameter changes, etc). However, as
equation (5.28) shows, the exact flow map ΦGauss,∗(δ; ·) of the low-order moments
is still a nonlinear transformation (by TGauss) of a linear map such that there is
no nonlinear dynamic behaviour present. More precisely, the phase portrait of the
exact flow map ΦGauss,∗(δ; ·) is topologically conjugate to the phase portrait of a
linear system. Since the approximate flow ΦGauss,tskip(δ; ·), computed with PGauss,
converges to ΦGauss,∗(δ; ·) for tskip → ∞ we do not expect nonlinear behavior for
ΦGauss,tskip either.

This raises the question what the natural nonlinearity of the underlying system
is in the case of equation-free methods applied to stochastic systems.

Fig. 6.1. Apparent one-dimensional nonlinear phase portrait after projection of the nonlinearly
transformed two-dimensional phase portrait for ΦGauss,∗(δ; ·) in Figure 5.4(a) onto the horizontal
line with variance x3 = 0.04 (similar to Figure 14 (left) of Barkley et al. [5]). For healing time tskip
with 1/λ3 � tskip � 1/λ2(≈ 106), the approximate flow ΦGauss,tskip approximates the exact flow
ΦGauss,∗ accurately on the eigenspace of L corresponding to the 3 dominant eigenvalues, but not on
the smaller space for the 2 dominant eigenvalues. Other parameters: µ = 6, ν = 0.3, δ = 10−3,
x1 = 1, x3 = 4× 10−2.

6.2.1. Artificial nonlinearity. Since the Fokker-Planck equation is linear, the
apparent nonlinear dynamics arises only due to artificial projections of nonlinearly
transformed phase portraits of the linear Fokker-Planck equation when the healing
time tskip is not sufficiently large. For example, let us consider again the SDE with
lifting to a Gaussian distribution from subsection 5.3. What happens if we choose
a moment map for only the zeroth and first moment but an insufficiently large tskip

(which would have to be ∼ 1/λ2 ≈ 106 to make Theorem 3.3 applicable)? For
illustration we choose a lifting to near-delta Gaussian distributions, similar to [5].
In the notation from subsection 5.3 this means that we keep x1 equal to 1 (mass),
vary x2 (mean) between −3 and 3, and keep x3 � 1 (variance) fixed (x3 = 0.04 for
the illustration in Figure 6.1). The restriction is then the projection on the zeroth
and first moment. If the healing time tskip satisfies 1/λ3 � tskip � 1/λ2 (instead
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of tskip ∼ 1/λ2), then we obtain for the approximate flow ΦGauss,tskip a projection of
the phase portrait Figure 5.4(a) onto the line with x3 = 0.04. Figure 6.1 shows this
projected phase portrait (arrows on the x-axis) and the associated right-hand side (in
blue). It resembles a phase portrait of a scalar ODE with two coexisting stable fixed
points, separated by an unstable fixed point. Of course, this nonlinearity is created
artificially by projecting the accurate nonlinearly transformed two-dimensional phase
portrait of a linear system onto an arbitrarily chosen line in R2.

6.2.2. Reduction of high-dimensional SDEs. While in high-dimensional
SDEs there is at first sight no obvious nonlinearity present in the evolution of den-
sities (see Fokker-Planck equation (5.3)), the reduction to low-order moments of a
multi-particle system with randomness still gives a valid dimension reduction proce-
dure. We give an informal outline of the argument for a particularly simple case in
which dimension reduction is in theory possible according to Givon et al. [17] (see
also textbook [36]).

Let us assume that the simulation (say, an agent-based simulation) can be mod-
elled by a high-dimensional SDE (which is the microscopic model)

(6.2) du = F (u) dt+ σu dWu,t,

where u ∈ Rnu and (to keep the argument simple) σu is constant and regular, and
Wu,t are nu independent instances of Brownian motion. Let us also assume that
there exist coordinates (x, y) ∈ Rnx × Rny (nx + ny = nu) for u such that in these
coordinates we have a time scale separation:

dx = εf(x, y) dt+
√
εσx dWx,t, dy = g(x, y) dt+ σy dWy,t,(6.3)

and that for each x the random variable y converges to its stationary density with rate
of order 1 (fast). Let v0(x, y) be the nullvector of the Fokker-Planck operator of the
fast subsystem of (6.3), p 7→ L0p = ∂y[ 1

2σ
T
y σy∂yp − gp], with

∫
v0(x, y) dy = 1. Any

function of the form v0(x, y)px(x) is also a nullvector of L0. If (ελ, p) (with O(λ) = 1)
is an eigenpair of the Fokker-Planck operator L0 +εL1 with L1p = ∂x[ 1

2σ
T
x σx∂xp−fp]

for the combined system (6.3) in (x, y) coordinates, then λ = λ0 + O(ε), p(x, y) =
v0(x, y)px(x) + O(ε), where (ελ0, px) is an eigenpair of the of the right-hand side of
the Fokker-Planck equation for the reduced SDE

(6.4) dx = εf̃(x) dt+
√
εσ̃x(x) dWx,t.

In (6.4) f̃(x) =
∫
f(x, y)v0(x, y) dy is the conditional expectation with respect to x

of the drift in x and σ̃x(x) = σx
[∫
v0(x, y) dy/2

]1/2
is the standard deviation of x in

the stationary distribution of y. Consequently, performing equation-free analysis on
the high-dimensional SDE (6.3) using a small number d of variables gives the same
results as equation-free analysis on the reduced system (6.4) (up to order ε2).

Givon et al. [17] discuss dimension reduction more generally (independent of
explicit spatial coordinates x and y) for Fokker-Planck operators of the form L0 +
εL1, assuming that the linear operator L0 has a non-trivial kernel (dimension greater
than 1, implying that ε is a singular perturbation parameter). Hence, equation-free-
analysis based on implicit lifting and sufficiently large healing times can be used
to perform closure-on-demand, as described in [25], rigorously. Convergence of the
approximate system created by lift-evolve-restrict maps to the Fokker-Planck operator
of the reduced system (6.4) occurs in the sense of classical singular perturbation
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theory toward an attracting low-dimensional linear invariant subspace of densities in
the domain of definition of L0 + εL1, as ensured by Theorem 3.3 for sufficiently large
healing times tskip.

For the case that the high-dimensional SDE consists of a large number N of
random variables (for example, describing agents) our analysis in section 5 and the
above discussion raise an important point. Applying the equation-free procedure to
initial densities and the Fokker-Planck operator L0 + εL1 does not reduce the high-
dimensional SDE to a low-dimensional SDE, but it reduces the high-dimensional SDE
to a low-dimensional linear ODE for the coefficients of the leading modes of the Fokker-
Planck equation. Hence, increasing the number of variables N (e.g., agents) does not
increase the spectral gap or the time scale separation. This is obvious for the simple
SDE example in section 5: decreasing the noise level will let λ2/λ3 converge to 0 (the
time scale for escape from one well to the other), but λ3/λ4 will remain approximately
1/2. Hence, we need the convergence result for finite time scale separation to prove
validity of the model reduction. Results for sufficiently large time scale separation
such as those by Zagaris et al. [16, 48, 49] (using, for example, constrained runs) and
Marschler et al. [31] are not applicable to equation-free methods operating on Fokker-
Planck equations, if the aim is to extract the decay rate or shape of the dominant
modes of the Fokker-Planck equation.

In summary, one possible work flow for analysing a high-dimensional SDE with
generator splittable as L0 + εL1 with equation-free methods is: (1) use the equation-
free moment map to determine properties of the leading d eigenmodes ϕj and eigen-
values λj of L0 + εL1; (2) if these ϕj and λj are also the leading eigenmodes and
eigenvalues to an operator L1 for a Fokker-Planck equation of a low-dimensional
SDE, identify the properties of L1 from the modes (for example, singular points of
the potential).

7. Outlook. The arguments in section 5, studying the simple scalar SDE dQ =
−V ′(Q) dt+ dWt, and the discussion in subsection 6.2 treat SDEs as linear evolution
equations for densities. The sections below outline how one may have to modify the
arguments of Theorem 3.3 for other tasks of equation-free analysis, which are beyond
the scope of this paper.

7.1. Bifurcation analysis for the drift of the reduced system. Assume
that we have access to a simulator of a system that can be modelled by a high-
dimensional SDEs of type (6.2),

(7.1) du = F (u) + σu dWu,t,

with time-scale separation as in (6.3). A sensible object for nonlinear equation-free
analysis is a bifurcation analysis of the deterministic part ẋ = f̃(x) of the reduced
SDE (6.4),

(7.2) dx = f̃(x) dt+ σx dWx,t,

assuming a reduction as discussed in subsection 6.2.2 is possible. For example, one
may want to determine its phase portraits and their parameter dependence. If one had
a direct simulator of the low-dimensional reduced SDE (7.2), one could approximate
f̃ in any given x0 ∈ Rnx via

(7.3) f̃(x0) = lim
δ→0

1

δ
[EXδ − x0],
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where Xδ (a random variable in Rnx) is the solution of the SDE (7.2) at time δ starting
from the deterministic x0, and EXδ ∈ Rnx is its expectation.

Equation-free analysis based on a lift-evolve-restrict map P with healing time pro-
vides an approximation for (7.3) if only a simulation of the high-dimensional SDE (7.1)
is available. The healing time permits the fast variable y to settle to its stationary
density v0(x, y) before one measures f̃ . Since the slow-fast coordinate split of u into
x and y is unknown, one has to define a lifting L and a restriction R between Rnx

and the space of random variables U in Rnu .
Let us assume that the lift L(xL) of xL ∈ Rnx is a random variable U0 in Rnu with

density p0 on Rnu . The SDE (7.1) creates a Markov process t 7→ Ut for t ≥ 0. Let
us consider a restriction R of a random variable Ut that is the expectation ER(Ut)
of a map R : Rnu 7→ Rnx . Thus, the lift-evolve-restrict map P : R × Rnx 7→ Rnx

is P (t;xL) = E[R(Ut)|U0 = L(xL)]. A good approximation of the deterministic
part of the slow flow (in xL coordinates) would not be (y − x0)/δ where y is the
solution of P (tskip + δ;x0) = P (tskip; y). Rather, a possible construction is to define
xR = P (tskip;xL) and then compute

(7.4) f̃L(xL) ≈ 1

δ

(
E

[
R(Utskip+δ)

∣∣∣∣R(Utskip) = xR and U0 = L(xL)

]
− xR

)
.

This means that one first solves the SDE for the healing time tskip, then increases time
to tskip + δ, and uses the conditional expectation of R(Utskip+δ), with the condition
that R(Utskip) = xR. This conditional expectation enters the difference quotient for

f̃L(xL), which is otherwise similar to (7.3). Constructions of the form (7.4) do not
fit into the framework of Theorem 3.3. Still, we conjecture that the function f̃L
approximates f̃ (up to a coordinate change from xL to x) for sufficiently small δ and
large tskip. The approximation will become accurate only in the limit of large time
scale separation for a set of nx slow variables (in contrast to Theorem 3.3), but we
need only genericity conditions on L and R.

7.2. Averaging deterministic high-dimensional systems. There is still an-
other gap to applications for multi-particle systems, which are commonly deterministic
at the microscopic level. For example, Barkley et al. [5] used the scalar SDE (5.1) as
a simple model for a heat bath problem where the position Q of a heavy particle of
mass M and generalized coordinates (Q,P ) is coupled to a heat bath of N smaller
particles of masses mi and generalized coordinates (qi, pi) for i = 1, . . . , N . The full
system in [5] was described by the Hamiltonian

(7.5) H(Q,P, q, p) =
P 2

2M
+ V (Q) +

N∑
i=1

p2
i

2mi
+

N∑
i=1

ki
2

(qi −Q)2,

where the number N of particles is large and the masses mi and spring coupling
constants ki are small (with particular N -dependent distributions, see [5], eq. (2.2)).
The necessary assumption to enable treatment of a fast deterministic subsystem as a
stochastic system is some form of ergodicity: any distribution of initial conditions of
the fast subsystem converges rapidly to a unique stationary distribution (conditioned
on the slow variables). This condition is hard to verify (even empirically) for any
particular system. In particular, it is not true for (7.5) if one treats the coordinates
(Q,P ) as the slow variables since the small masses are only coupled through the heavy
particle. Convergence to an SDE is only guaranteed for the system with Hamiltonian
(7.5) if the initial conditions for qi and pi are set according to the stationary measure
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conditioned on P and Q (which was done in [5], see [5, 27, 37] for background results).
Hence, the introduction of a healing time tskip will not have an improving effect for
equation-free analysis of the heat bath problem (7.5).

7.3. Approximation of stochastic slow manifolds. As mentioned already
in the introduction, our convergence result for finite time scale separation relies on
a result about model reduction that is valid for finite time scale separation, namely
the persistence of normally hyperbolic invariant manifolds and their stable fibers.
While the model reduction results for stochastic systems in [17, 36] provide only
statements for the limit of infinite time scale separation, stronger results are available
for stochastic systems, if one is able to fix the noise realization (for example, the
Brownian path) [1, 2]. In this case, the microscopic map M has, for the example
of an SDE of the form du = F (u) dt + σu dWu,t, the form M(t;u, ω), where ω ∈
C([0,∞);RD) is a realization of the Wiener processWu,t andM satisfies the invariance
relation M(t+ s;x, ω) = M(t;M(s;x, ω), ω(s+ ·)).

Invariant stochastic manifolds C are then invariant objects depending on the real-
ization (one may write C(ω)). Their persistence and attraction properties have been
proven for some cases such as finite-dimensional SDEs [9, 47] and SPDEs [11]. For
these cases, an implicit equation-free scheme y = Φtskip(δ;x, ω) defined implicitly via

(7.6) RM(tskip;L(y), ω) = RM(tskip + δ;L(x), ω)

may converge in a similar way as claimed in Theorem 3.3. However, the stochastic
invariant manifold results and the implementation of (7.6) depend on the ability to
use the same realization ω throughout the computation, as was done in [22] (for
example, for different arguments y during a Newton iteration for (7.6)). While fixing
the realization is possible for SDEs, for many of the applications for equation-free
analysis [18, 24, 30, 32, 33, 42, 45] it is not clear how to do that.

8. Conclusion. This paper proves convergence of equation-free methods, based
on lift-evolve-restrict maps P (t; ·) = R·M(t; ·) ◦ L. Our convergence proof does not
assume that the time scale separation becomes large, in contrast to previous results
[49, 31]. Rather, convergence is achieved for finite time scale separation, but in the
limit of large healing time tskip and an implicit approximation of the slow flow Φ∗(t;x):
P (tskip; y) = P (t + tskip;x) defines the approximation Φtskip(t;x) := y. The original
explicit equation-free framework, as proposed by Kevrekidis et al., corresponds to the
case where tskip = 0 and R◦L = I. The analysis is performed for attracting slow
manifolds in deterministic systems. However, we demonstrate on a simple SDE that
our result may also be useful for stochastic systems, where the time scale separation
is in the spectrum of the Fokker-Planck equation and is often only of order 1. In par-
ticular, for the prototype example investigated by [5] the implicit flow approximation
Φtskip converges to the true solution Φ∗ of the linear Fokker-Planck equation for large
healing times tskip.
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Theorem 3.3 we have to analyze the two equations (for y and y∗ respectively)

R(M(tskip;L(y))) = R(M(tskip + δ;L(x))),(A.1)

R(M(tskip; g(L(y∗)))) = R(M(tskip + δ; g(L(x)))).(A.2)

In both equations x ∈ Rd enters as a parameter. Assumption 3.2 ensures that the
solution y∗ of (A.2) is unique and independent of tskip. For equation (A.1) we have
to prove the existence of a solution y, and prove that it is close to y∗ for sufficiently
large tskip. Throughout this appendix we will use the notations

u(t) = O(exp(αt)), v(t) = o(exp(αt))

to describe that ‖u(t) exp(−αt)‖ is bounded uniformly for all t ≥ 0, and that the
function v(t) exp(−αt) tends to zero for t → ∞. For the special case α = 0 we write
O(1) and o(1). If the quantity depends also on other parameters (say, y ∈ domL)
then the expression implies uniformity (for example, for y close to y∗) unless stated
explicitly otherwise.

Using the definitions (3.7) of P∗(t;x) = R(M(t; g(L(x)))) and (3.10) for the map
P (t;x) = R(M(t;L(x))), equation (A.1) can be written in the form (using (A.2))

P∗(tskip; y) = P∗(tskip; y∗) + exp(−dtrtskip) [G(tskip; y) +H(tskip;x)] , where(A.3)

G(t; y) = − exp(dtrt) [P (t; y)− P∗(t; y)] ,

H(t;x) = exp(dtrt) [P (t+ δ;x)− P∗(t+ δ;x)] .

The operator P∗ and the newly introduced G and H satisfy the following conditions
on their derivatives by Assumption 3.1, (3.2) and (3.3) on separation of time scales
for the flow M :

∂j2P∗(tskip; y) = O(exp(dtantskip)),(A.4)

∂j2G(tskip; y) = O(1),(A.5)

∂j2H(tskip;x) = O(1)(A.6)

for all j ∈ {0, . . . , kmax} and all y in a neighborhood of y∗. In the case of H the bound
is also uniform for δ ∈ [−δmax, δmax]. Thus, the parameter δ has been dropped from
the list of arguments in H. Combining the separation of time scales in Assumption 3.1,
(3.2), with Assumption 3.2 on the uniform invertibility of R|C and g ◦L : domL 7→ C,
we have a Lipschitz constant (C is independent of y1, y2 and tskip)

‖y1 − y2‖ ≤ C exp(dtantskip)‖P∗(tskip; y1)− P∗(tskip; y2)‖,(A.7)

when inverting P∗(tskip; ·) for all y1, y2 in a neighborhood of y∗ and all tskip ≥ 0. We
also note that

(A.8)

∥∥∥∥∂jy∗(x)

∂xj

∥∥∥∥ = O(1)

Specifically, these derivatives depend only on δ ∈ [−δmin, δmax]. Thus, ∂jy∗(x) are
uniformly bounded due to (3.2), and because we required exp(dtanδmax) = O(1).

Abbreviating notation In the following all derivatives of the functions P∗, G and
H are with respect to their second argument (y or x). The argument tskip enters the
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functions P∗, G and H as a parameter that we will drop in our notation such that we
will write, for example, ∂3P∗(y∗)[∂y∗]

2[∂2y∗] for ∂3
2P∗(tskip; y∗)[∂y∗/∂x]2[∂2y∗/(∂x)2].

The parameter tskip enters estimates via the bounds (A.4)–(A.8) for P∗, G and H.
The properties (A.4)–(A.8) make Banach’s contraction mapping principle appli-

cable to Equation (A.3) in a sufficiently small neighborhood of y∗ and for sufficiently
large tskip (as shown in the paragraph that follows). We then estimate the error of
the derivatives of y with respect to x.

Existence of solution y and its error. We apply the Banach contraction mapping
principle to the map

(A.9) N : y 7→ P−1
∗ (P∗(y∗) + exp(−dtrtskip) [G(y) +H(x)])

(P−1
∗ (·) is the inverse of the diffeomorphism P∗ : U(y∗) 7→ U(P∗(y∗))). Let B be a

closed ball around y∗ of radius R in which all estimates (A.4)–(A.7) on P∗, G and H
hold. Combining the estimate (A.7) for the Lipschitz constant of P−1

∗ with y1 = y
and y2 = y∗, and the bound on the derivatives for G (w.r.t. y) gives an estimate for
the difference of N(y) from y∗:

‖N(y)− y∗‖ ≤ C exp((dtan − dtr)tskip)
[
max
B
‖∂G‖‖y‖+ ‖H(x)‖

]
,

≤ C exp((dtan − dtr)tskip)
[
max
B
‖∂G‖(‖y∗‖+R) + ‖H(x)‖

]
.

Thus, choosing tskip sufficiently large, we can ensure that N maps B back into itself
(since dtan < dtr). Similarly, the Lipschitz constant of N in B can be estimated by

‖N(y1)−N(y2)‖ ≤ C exp((dtan − dtr)tskip) max
B
‖∂G‖‖y1 − y2‖,

where C exp((dtan − dtr)tskip) maxB ‖∂G‖ is smaller than unity for sufficiently large
tskip. Consequently, N has a unique fixed point y in B, which solves the perturbed
problem (A.1). Moreover, the difference y − y∗ satisfies

(A.10) y − y∗ = O(exp((dtan − dtr)tskip)).

Error of derivatives. The smoothness of the coefficients in (A.3) ensures that y
is also differentiable as a function of x up to order kmax. We want to prove that for `
satisfying ` ≤ kmax − 1 (where kmax is the order of differentiability of the coefficients
in (A.3)) and (2`+ 1)dtan < dtr the bound on the error is

(A.11) ∂`y − ∂`y∗ = O(exp(((2`+ 1)dtan − dtr)tskip)).

We prove this by induction starting from ` = 1, which we check first using the previous
paragraph’s results.

Assume that the bound (A.11) holds for all derivatives up to `− 1. This implies,
in combination with (A.8), that y, ∂y, . . . , ∂`−1y are bounded uniformly for all
tskip ≥ 0 (just like ∂`y∗ for ` = 1 . . . kmax by (A.8)). In order to estimate the difference
∂`y−∂`y∗, we return to (A.3) and differentiate each of the terms ` times with respect
to x (noting that y∗ and y are also functions of x):

(A.12)
∂`

∂x`
[P∗(y(x))]− ∂`

∂x`
[P∗(y∗(x))] = exp(−dtrtskip)

[
∂`

∂x`
[G(y(x))] + ∂`H(x)

]
.
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The term ∂`H(x) is O(1) for all tskip ≥ 0 by (A.6). In the term ∂`/(∂x`)[G(y)] we
extract the highest-order derivative of y by writing it in the form

∂`

∂x`
[G(y)] = O(1) + ∂G(y)∂`y = O(1) + ∂G(y)∂`y∗ + ∂G(y)

[
∂`y − ∂`y∗

]
= O(1) + ∂G(y)

[
∂`y − ∂`y∗

]
(A.13)

For (A.13) the boundedness of the O(1) terms follows from the boundedness of all
their parts: the derivatives of G are bounded by (A.5), ∂`y∗ is bounded by (A.8),
and y, ∂y,. . . , ∂`−1y are bounded by induction hypothesis. The pre-factor ∂G(y) of
∂`y − ∂`y∗ is also bounded uniformly for all tskip ≥ 0.

Inserting the right-hand side of (A.13) into the right-hand side of (A.12), we
obtain
(A.14)
∂`

∂x`
[P∗(y(x))]− ∂`

∂x`
[P∗(y∗(x))] = exp(−dtrtskip)∂G(y)

[
∂`y − ∂`y∗

]
+O(exp(−dtrtskip))

Expanding the left-hand side of the above equation using the chain rule, we get a
sequence of differences with equal powers of derivatives of P∗, y and y∗. From this
sequence of differences we extract the difference between derivatives involving ∂`y and
∂`y∗ and collect all other terms in a remainder r (which is present only for ` > 1 and
will later turn out to be of order O(exp((2`dtan − dtr)tskip))):

(A.15)
∂`

∂x`
[P∗(y(x))]− ∂`

∂x`
[P∗(y∗(x))] = ∂P∗(y)∂`y − ∂P∗(y∗)∂`y∗ + r.

From the difference with the highest-order derivatives of y and y∗ we extract the
difference ∂`y − ∂`y∗ by adding zeroes. Using the notational convention

F{x, y} =

∫ 1

0

F (sx+ (1− s)y) ds

for the mean between two points of a single-argument function F in the following,

∂P∗(y)∂`y − ∂P∗(y∗)∂`y∗ = ∂P∗(y)
[
∂`y − ∂`y∗

]
+ [∂P∗(y)− ∂P∗(y∗)] ∂`y∗

= ∂P∗(y)
[
∂`y − ∂`y∗

]
+ ∂2P∗{y, y∗}[y − y∗] ∂`y∗(A.16)

= ∂P∗(y)
[
∂`y − ∂`y∗

]
+O(exp((2dtan − dtr)tskip)).(A.17)

The order O(exp((2dtan − dtr)tskip)) of the second term follows from the bounds on
y − y∗ (given in (A.10)), ∂2P∗ (given in (A.4)) and the boundedness of ∂`y∗ (given
in (A.8)). This immediately implies the estimate for the case ` = 1: inserting (A.17)
into (A.14), we have for ` = 1
(A.18)
∂P∗(y) [∂y − ∂y∗] = exp(−dtrtskip)∂G(y) [∂y − ∂y∗] +O(exp((2dtan − dtr)tskip)).

In (A.18) we have collected the bounded terms with pre-factors exp(−dtrtskip) and
exp((2dtan − dtr)tskip) using the larger pre-factor exp((2dtan − dtr)tskip). Since (by
(A.7)) the inverse of ∂P∗(y) satisfies ∂P∗(y)−1 = O(exp(dtantskip)) we can rearrange
(A.18) to isolate ∂y−∂y∗ for large tskip, giving the estimate (note that ∂G(y) = O(1))

(A.19) ∂y − ∂y∗ = O(exp((3dtan − dtr)tskip)),

which is what we had to prove for ` = 1.
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Error of higher-order derivatives. Let us assume that the assumptions of the
theorem are satisfied for all j < ` with ` ≥ 2. By the conditions of the theorem we
assume that (2`+ 1)dtan < dtr and the conditions (A.4)–(A.8) are satisfied for j ≤ `
(including existence of the corresponding derivatives).

For ` > 1 we have to include the remainder r from (A.15) in our consideration.
This remainder is a sum of expressions aν of the form

(A.20) aν = ∂jP∗(y) [∂ν1y] . . . [∂νjy]− ∂jP∗(y∗) [∂ν1y∗] . . . [∂
νjy∗] ,

where 2 ≤ j ≤ `, and ν is a j-tuple of integers νi ∈ {1, . . . , `−1} with
∑j
i=1 νi = `. All

factors ∂νiy and ∂νiy∗ are of order O(1) with respect to tskip according to (A.8) and
induction hypothesis. The terms ∂jP∗(y) and ∂jP∗(y∗) are of order O(exp(dtantskip))
according to (A.4). The difference in (A.20) can be expressed as a sum of j + 1
differences involving ∂iy − ∂iy∗ for some i ∈ {0 . . . , `− 1} by adding j + 1 zeros:

aν =∂j+1P∗{y, y∗}[y − y∗] [∂ν1y] . . . [∂νjy](A.21)

+

j∑
i=1

∂jP∗(y∗)

[∏
m<i

∂νmy∗

]
[∂νiy − ∂νiy∗]

[∏
m>i

∂νmy

]
(A.22)

The right-hand side in (A.21) is of order O(exp((2dtan − dtr)tskip)). The ith term in
the sum in (A.22) is of order O(exp((dtan(1+(2νi+1))−dtr)tskip)). So, since νi ≤ `−1
and ` > 1, all terms in the sum for aν are at most of order O(exp((2`dtan−dtr)tskip)).
Consequently,

(A.23) r = O(exp((2`dtan − dtr)tskip)).

Inserting this estimate in combination with (A.15) and (A.17) into (A.14), we obtain
(A.24)
∂P∗(y)

[
∂`y − ∂`y∗

]
= exp(−dtrtskip)∂G(y)

[
∂`y − ∂`y∗

]
+O(exp((2`dtan−dtr)tskip)).

In (A.24) we have included the smaller error terms O(exp((2dtan − dtr)tskip)) and
O(exp(−dtrtskip)) into the (for ` > 1) larger O(exp((2`dtan − dtr)tskip)). Since, dtr <
dtan, ∂G(y) = O(1) and ∂P∗(y) = O(exp(dtantskip)), we can isolate ∂`y − ∂`y∗ in
(A.24). This results in the asymptotic estimate claimed in Theorem 3.3:

∂`y − ∂`y∗ = O(exp(((2`+ 1)dtan − dtr)tskip)).

Appendix B. Brief description of supplementary material. The sup-
plementary material contains Matlab/octave scripts and functions that reproduce
Figure 4.1 from section 4. The provided zip file unpacks into folder demo Michae

lis Menten/. The main script is demo Michaelis Menten.m, which will reproduce
Figure 4.1, showing phase space geometry of the Michaelis-Menten kinetics (4.1) with
explicit time scale separation as also studied by Gear et al. and others [34, 16, 48, 49].

• Folder demo Michaelis Menten/rotated/ contains the published html out-
put from the script for the rotated coordinate system (4.7) in file demo Mich

aelis Menten.html.
• Folder demo Michaelis Menten/unrotated/ contains the published html out-

put from the script for the coordinate system with explicit time scale separa-
tion (4.1) in file demo Michaelis Menten.html.

• Folder tools/ contains some auxiliary functions called in the script (a simple
Newton iteration ScSolve.m, an explicit initial-value-problem solver using
the Dormand-Prince scheme and fixed step size ScIVP.m, and a function for
approximating the Jacobian with finite differences ScJacobian.m.
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