1,414 research outputs found

    Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets

    Get PDF
    Associative olfactory memory in Drosophila has two components called labile anesthesia-sensitive memory and consolidated anesthesia-resistant memory (ARM). Mushroom body (MB) is a brain region critical for the olfactory memory and comprised of 2000 neurons that can be classified into alphabeta, alpha'beta', and gamma neurons. Previously we demonstrated that two parallel pathways mediated ARM consolidation: the serotonergic dorsal paired medial (DPM)-alphabeta neurons and the octopaminergic anterior paired lateral (APL)-alpha'beta' neurons. This finding prompted us to ask how this composite ARM is retrieved. Here, we showed that blocking the output of alphabeta neurons and that of alpha'beta' neurons each impaired ARM retrieval, and blocking both simultaneously had an additive effect. Knockdown of radish and octbeta2R in alphabeta and alpha'beta' neurons, respectively, impaired ARM. A combinatorial assay of radish mutant background rsh1 and neurotransmission blockade confirmed that ARM retrieved from alpha'beta' neuron output is independent of radish. We identified MBON-beta2beta'2a and MBON-beta'2mp as the MB output neurons downstream of alphabeta and alpha'beta' neurons, respectively, whose glutamatergic transmissions also additively contribute to ARM retrieval. Finally, we showed that alpha'beta' neurons could be functionally subdivided into alpha'beta'm neurons required for ARM retrieval, and alpha'beta'ap neurons required for ARM consolidation. Our work demonstrated that two parallel neural pathways mediating ARM consolidation in Drosophila MB additively contribute to ARM expression during retrieval

    Semi-supervised distance metric learning for collaborative image retrieval and clustering

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Majorana Zero-modes and Topological Phases of Multi-flavored Jackiw-Rebbi model

    Get PDF
    Motivated by the recent Kitaev's K-theory analysis of topological insulators and superconductors, we adopt the same framework to study the topological phase structure of Jackiw-Rebbi model in 3+1 dimensions. According to the K-theory analysis based on the properties of the charge conjugation and time reversal symmetries, we classify the topological phases of the model. In particular, we find that there exist Z\mathbf{Z} Majorana zero-modes hosted by the hedgehogs/t'Hooft-Polyakov monopoles, if the model has a T2=1T^2=1 time reversal symmetry. Guided by the K-theory results, we then explicitly show that a single Majorana zero mode solution exists for the SU(2) doublet fermions in some co-dimensional one planes of the mass parameter space. It turns out we can see the existence of none or a single zero mode when the fermion doublet is only two. We then take a step further to consider four-fermion case and find there can be zero, one or two normalizable zero mode in some particular choices of mass matrices. Our results also indicate that a single normalizable Majorana zero mode can be compatible with the cancellation of SU(2) Witten anomaly.Comment: 29 pages, 3 figures; v2, typos correcte

    IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor Networks

    Get PDF
    The design of ubiquitous computing environments is challenging, mainly due to the unforeseeable impact of real-world environments on the system performance. A crucial step to validate the behavior of these systems is to perform in-field experiments under various conditions. We introduce IRIS, an experiment management and data processing tool allowing the definition of arbitrary complex data analysis applications. While focusing on Wireless Sensor Networks, IRIS supports the seamless integration of heterogeneous data gathering technologies. The resulting flexibility and extensibility enable the definition of various services, from experiment management and performance evaluation to user-specific applications and visualization. IRIS demonstrated its effectiveness in three real-life use cases, offering a valuable support for in-field experimentation and development of customized applications for interfacing the end user with the system

    Weapons of the Powerful: Authoritarian Elite Competition and Politicized Anticorruption in China

    Get PDF
    What motivates authoritarian regimes to crack down on corruption? We argue that just as partisan competition in democracies tends to politicize corruption, authoritarian leaders may exploit anticorruption campaigns to target rival supporters during internal power struggles for consolidating their power base. We apply this theoretical framework to provincial leadership turnover in China and test it using an anticorruption data set. We find that intraelite power competition, captured by the informal power configuration of government incumbents and their predecessors, can increase investigations of corrupt senior officials by up to 20%. The intensity of anticorruption propaganda exhibits a similar pattern. The findings indicate that informal politics can propel strong anticorruption drives in countries without democratically-accountable institutions, although the drives tend to be selective, arbitrary, and factionally biased.postprin

    The low-energy phase-only action in a superconductor: a comparison with the XY model

    Full text link
    The derivation of the effective theory for the phase degrees of freedom in a superconductor is still, to some extent, an open issue. It is commonly assumed that the classical XY model and its quantum generalizations can be exploited as effective phase-only models. In the quantum regime, however, this assumption leads to spurious results, such as the violation of the Galilean invariance in the continuum model. Starting from a general microscopic model, in this paper we explicitly derive the effective low-energy theory for the phase, up to fourth-order terms. This expansion allows us to properly take into account dynamic effects beyond the Gaussian level, both in the continuum and in the lattice model. After evaluating the one-loop correction to the superfluid density we critically discuss the qualitative and quantitative differences between the results obtained within the quantum XY model and within the correct low-energy theory, both in the case of s-wave and d-wave symmetry of the superconducting order parameter. Specifically, we find dynamic anharmonic vertices, which are absent in the quantum XY model, and are crucial to restore Galilean invariance in the continuum model. As far as the more realistic lattice model is concerned, in the weak-to-intermediate-coupling regime we find that the phase-fluctuation effects are quantitatively reduced with respect to the XY model. On the other hand, in the strong-coupling regime we show that the correspondence between the microscopically derived action and the quantum XY model is recovered, except for the low-density regime.Comment: 29 pages, 11 figures. Slightly revised presentation, accepted for publication in Phys. Rev.

    Low-Energy Quasiparticles in Cuprate Superconductors: A Quantitative Analysis

    Full text link
    A residual linear term is observed in the thermal conductivity of optimally-doped Bi-2212 at very low temperatures whose magnitude is in excellent agreement with the value expected from Fermi-liquid theory and the d-wave energy spectrum measured by photoemission spectroscopy, with no adjustable parameters. This solid basis allows us to make a quantitative analysis of thermodynamic properties at low temperature and establish that thermally-excited quasiparticles are a significant, perhaps even the dominant mechanism in suppressing the superfluid density in cuprate superconductors Bi-2212 and YBCO.Comment: Revised version with additional page, figure, table and reference; to appear in Physical Review B (1 August 2000
    • …
    corecore