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ABSTRACT
Recognizing visual content in unconstrained videos has be-
come a very important problem for many applications. Ex-
isting corpora for video analysis lack scale and/or content di-
versity, and thus limited the needed progress in this critical
area. In this paper, we describe and release a new database
called CCV, containing 9,317 web videos over 20 semantic cat-
egories, including events like “baseball” and “parade”, scenes
like “beach”, and objects like “cat”. The database was col-
lected with extra care to ensure relevance to consumer in-
terest and originality of video content without post-editing.
Such videos typically have very little textual annotation and
thus can benefit from the development of automatic content
analysis techniques.
We used Amazon MTurk platform to perform manual an-

notation, and studied the behaviors and performance of hu-
man annotators on MTurk. We also compared the abilities in
understanding consumer video content by humans and ma-
chines. For the latter, we implemented automatic classifiers
using state-of-the-art multi-modal approach that achieved
top performance in recent TRECVID multimedia event de-
tection task. Results confirmed classifiers fusing audio and
video features significantly outperform single-modality solu-
tions. We also found that humans are much better at under-
standing categories of nonrigid objects such as “cat”, while
current automatic techniques are relatively close to humans
in recognizing categories that have distinctive background
scenes or audio patterns.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries—Collection

General Terms
Standardization, Experimentation, Measurement.

Keywords
Consumer videos, database, multi-modal features, human
recognition accuracy.
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1. INTRODUCTION
The explosive growth of digital videos on the Internet de-

mands effective methods for automatic recognition and in-
dexing of visual content. Such techniques have great po-
tential in many important applications such as video search
and open-source intelligence analysis. Key to the develop-
ment of visual recognition systems is the construction of
corpora with sufficient annotations for training robust mod-
els. The computer vision community has devoted several
efforts to the benchmarking of image understanding tasks
such as scene and object recognition. For example, LabelMe
[19], ImageNet [6], and PASCAL VOC series [7] provide
databases for evaluating object recognition performance, and
the newly created SUN database [24] offers a comprehensive
set for scene recognition research. In contrast, databases for
video understanding are still quite limited in either scale or
content diversity. Most video databases were designed for
human action recognition, and consist of videos collected in
controlled environments with clear backgrounds and little
camera motion (e.g., KTH [20] and Weizmann [3]). Others
are less constrained in capturing conditions, but are subject
to formal or professional production processes, e.g., Holly-
wood movie database [13] and TRECVID databases from
broadcast news to documentary [23]. A recent database from
[2] focuses on human actions in videos downloaded from the
Web, but does not include other content categories seen in
general consumer videos.

In this paper, we introduce and release a new consumer
video database called CCV1 (Columbia Consumer Video). We
are particularly interested in consumer videos because of
their dominant and growing role in online video sharing.
Compared to other types of online videos such as news,
sports, and TV programs, consumer videos contain inter-
esting and very diverse content, but have much less textual
tag and content descriptions. For instance, on average, each
consumer video in CCV has only 2.5 tags, while a general
video from YouTube has 9 tags according to a recent study
in [21]. The lack of textual descriptions creates significant
difficulties for search engines and therefore naturally mo-
tivates research on content analysis. On the other hand,
since consumer videos are captured by ordinary users with-
out post-editing, the original audio tracks are preserved – in
contrast to many news or movie videos where soundtracks
are dubbed. This facilitates research on joint analysis of
audio and visual features – two modalities that have been
mostly studied separately in the past.

The major contributions of this paper are summarized as

1The database is available at www.ee.columbia.edu/dvmm/CCV.
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Figure 1: Examples in Columbia Consumer Video database. The first 5 categories in the middle row are
objects and scenes, and all the remaining ones are events. See detailed category definitions in Figure 11.
Discernible faces are masked due to privacy concern.

follows:

• A large database of 9,317 consumer videos is collected
from the Internet. The database is fully labeled over
20 categories, most of which are complex events, along
with several objects and scenes. The categories are
carefully chosen according to surveys of consumer in-
terest and consideration of usefulness, detectability,
observability, and content diversity.

• We evaluate automatic classifiers using state-of-the-
art approaches that achieved top performance in re-
cent TRECVID multimedia event detection task [11].
Carefully-designed features in both audio and visual
domains, as well as their combinations, are tested.

• We study human annotation behaviors on the Amazon
MTurk platform. Such studies offer interesting cues for
interpreting human annotation quality. We also quan-
titatively measure human performance, and investi-
gate the difference between humans and machines in
consumer video understanding.

In the following we introduce the CCV database in Sec-
tion 2. We then explain the Amazon MTurk annotation pro-
cess in Section 3 and measure human recognition accuracy
in Section 4. Section 5 includes an evaluation of automatic
recognition techniques and compares machines with humans
in video understanding. Finally, we conclude this paper in
Section 6.

2. CCV: COLUMBIA CONSUMER VIDEO
DATABASE

The first stage in constructing a video database suitable
for research is to ensure the selected categories are relevant
to user needs and feasible for automatic recognition. For
this, we build upon our earlier effort in constructing the Ko-
dak consumer video concept ontology [4]. The Kodak on-
tology contains over 100 concept definitions based on exten-
sive user studies to evaluate the usefulness and observabil-
ity (popularity) of each concept found in actual consumer
videos. Some of the previous concepts, such as “wedding”,
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Figure 2: Number of positive samples per category
in CCV, sorted in descending order from bottom to
top.

turn out to be visually too diverse for computers (or even hu-
mans) to recognize. To address this, we split them into more
visually and semantically distinct categories (e.g., “wedding
ceremony” and “wedding dance”). Moreover, some very spe-
cific categories like “three people” and pure-audio categories
such as “music” and “cheering” were dropped. This left
20 categories covering a wide range of topics including ob-
jects (e.g., “cat” and “dog”), scenes (e.g., “beach” and “play-
ground”), sports events (e.g., “baseball” and “skiing”), and
higher-level activity events (e.g., “graduation” and “music
performance”). Figure 1 gives an example for each category.
Detailed definitions can be found in Figure 11. It is worth
noting that most of these categories are intrinsically multi-
modal, i.e., they can be best detected by visual and audio
clues together.

Videos in CCV were downloaded from YouTube searches.
We downloaded around 500 videos for each search. To en-
sure that only consumer videos were collected, queries were
formed by combining a string “MVI” with each of the cat-
egory names (e.g., “MVI and parade”). Since “MVI” is the
default filename prefix for videos recorded by many digital
cameras, we found it very effective in digging out consumer
videos from YouTube: almost all the returns were observed
to be consumer videos. The final database has 9,317 videos,
with an average duration of around 80 seconds (210 hours in



total). Since the category relevance from these queries was
very unreliable, we employed a subsequent stage of manual
labeling to fully annotate the videos with the 20 categories.
Figure 2 shows the number of positive examples per category
after manual annotation, which ranges from 224 (“wedding
ceremony”) to 806 (“music performance”). The annotation
process is described in Section 3.

2.1 Comparison with Related Databases
A few existing databases are relevant to unconstrained

video analysis. We discuss the differences among these be-
low.

Human Action Recognition Databases: Besides the
simple human action video databases such as KTH [20] and
Weizmann [3], there are a few unconstrained action video
databases, e.g., UCF action database [14] and the Holly-
wood Movie database [13]. The UCF database contains
1,168 YouTube video clips of 11 human action classes such
as“swinging”and“jumping”. A recent extension of the UCF
database contains 50 classes [2]. The Hollywood database
contains 1,707 movie video clips of 12 action classes such as
“kissing”and“standing up”. All these databases have played
a vital role in advancing action recognition research. How-
ever, with the rapid growth of user-generated videos online,
there is a strong need to go beyond human actions – CCV

aims at filling the gap by including a broader set of cate-
gories ranging from events, objects, to scenes, which are all
culled in a rigorous manner.

Kodak Consumer Video Database [4]: The Kodak
consumer videos were donated by around 100 customers of
Eastman Kodak Company for research purposes. There are
1,358 video clips labeled with 25 concepts (including activ-
ities, scenes, and simple objects like “single person”). This
database has been used in several recent studies, e.g., joint
audio-visual modeling for video concept detection [8]. One
of its critical drawbacks is that there is not enough intra-
class variation. Although the videos were collected over a
period of one year, the customers usually captured them
under similar scene (e.g., many “picnic” videos were taken
at the same location). This makes the database vulnerable
to over-fitting issues. CCV does not have this limitation as
it contains a much larger number of YouTube videos with
more diverse content.

LabelMe Video Database [25]: The LabelMe Video data-
base is built upon the success of the LableMe image annota-
tion platform [19]. The authors developed an online system
that allows Internet users to upload videos and label not only
event categories, but also outlines and locations of moving
objects. Since the labeling process is time-consuming, and
does not result in any payment, it is dependent on highly-
motivated users. So far, only 1321 videos have been labeled.
CCV database has a larger number of videos (and can be eas-
ily expanded). Also, videos in LabelMe Video are mostly up-
loaded by a small number of researchers; the current edition
contains many street-view videos. In contrast, CCV videos
are very diverse.

TRECVID MED 2010 Database [1]: Motivated by the
need to analyze complex events in large scale video collec-
tions, the annual NIST TRECVID activity initialized a new
task in 2010 called Multimedia Event Detection (MED). Fol-
lowing the tradition of other TRECVID tasks, each year
a new (or an extended) database is created for cross-site

Figure 3: Snapshot of our Amazon MTurk interface.
A video is displayed on the left, and the annotator
marks all the categories appearing in the video. The
categories are arranged into a few groups for efficient
browsing (e.g., “Celebration”). Annotation instruc-
tions are given at the top.
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Figure 4: (Left) Number of finished HITs by each of
the MTurk annotators, sorted in descending order.
The Y-axis is plotted in log scale. In total there
are 60 annotators engaged in this effort, with 21 of
them completing more than 100 HITs. (Right) Av-
erage time per HIT spent by each annotator, sorted
in descending order. 10 annotators spent more than
80 seconds (mean video duration). The others ap-
parently did not finish viewing the entire video as
instructed.

system comparisons. The 2010 edition of MED database
contains 3,488 video clips (118 hours in total). Three events
(“batting a run in”, “making a cake”, and“assembling a shel-
ter”) were used, each having around 50 positive samples in
the development and test sets respectively. Compared with
MED 2010, CCV is much larger and contains more positive
samples per category.

3. ANNOTATION WITH AMAZON MTURK
We used the Amazon Mechanical Turk (MTurk) platform

to employ Internet users as database annotators. MTurk is
a crowdsourcing Internet marketplace that allows requesters
to utilize human intelligence to perform customizable assign-
ments, usually with payment. Figure 3 displays our interface
on MTurk. Annotating a single video w.r.t. the 20 categories
listed on the right is a single MTurk transaction, known as
a HIT (Human Intelligence Task). The video playback is
scheduled at 10-second segments, with the first segment au-
tomatically started and the subsequent ones triggered on
demand by the user. Such arrangement is used to maximize
efficiency based on the assumption that video content in the
first 10 seconds is sufficient in determining some categories
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Figure 5: Recognition/Annotation accuracy of 20 MTurk annotators on a subset of CCV, measured in terms
of both precision and recall. (a) Annotators sorted by the number of finished HITs (# HITs shown on top
of each pair of bars). All the annotators who submitted more than 50 HITs achieved nearly 80% precision
and similar recall rates. (b) Annotators sorted by the average time spent to finish a HIT (in seconds; shown
above the bars). We did not observe strong correlation between annotation time and label accuracy.

(e.g., ”baseball” and ”playground”). However, annotators
were encouraged to continue viewing beyond the first 10-
second segment, to ensure not missing content entering the
camera view in the later part. All annotators were asked
to read category definitions carefully and pass a qualifica-
tion round before performing the HITs. In the qualification
page, the annotators had to watch 10 videos and answer
several binary questions correctly. Finally, we restricted the
geographic origin of the annotators to the United States to
reduce linguistic confusion over category definitions.
Although the interface is carefully designed to ensure good

label quality, annotators sometimes made mistakes and not
all of them finished the HITs rigorously (cf. Section 4). We
therefore set up two strategies to further improve label qual-
ity. First, we browsed the annotation results and inspected
some suspicious labels. For example, some annotators fre-
quently chose “I don’t see any video playing”. We manually
checked labels from such users and rejected incorrect ones.
Second and more importantly, a video was assigned to mul-
tiple independent annotators2, then a voting strategy was
used to consolidate the results and filter unreliable labels.
Figure 4 gives some statistics of the entire annotation cy-

cle, where we show the number of submitted HITs and the
mean labeling time of each annotator. Among the 60 anno-
tators, 21 finished more than 100 HITs and a few of them
labeled several thousand. On average the annotators took
22 seconds to finish one HIT. This is much shorter than the
average video duration (80 seconds), indicating that they
tended to finish the HITs as quickly as possible and did
not watch the entire video. In the next section we analyze
human annotation accuracy to determine a suitable label
consolidation strategy.

4. HUMAN RECOGNITION ACCURACY
Inspired by recent work on evaluating human accuracies

in image-based object/scene recognition [17, 24], we inves-
tigated the capabilities of human annotators to understand
consumer videos. The purposes of this study were twofold:
First, we are interested in knowing how accurately humans
can recognize video content. This human recognition ac-
curacy will be used in the next section to compare against
automatic approaches. Second, this analysis makes it very
easy to devise the best strategy for consolidating the labels
from multiple MTurk annotators.
To measure human recognition accuracy, we randomly

2We assigned each HIT to 4 MTurk annotators.

sampled 50 videos for each category such that each video
was given that category label by at least one MTurk an-
notator. This forms a small subset of 896 videos (since
some videos have multiple labels). We then manually la-
beled these videos ourselves, treating our labels as a gold-
standard ground-truth. Since we understand the category
definitions very well and performed the labeling tasks care-
fully with thorough discussions to avoid confusion, our labels
are as reliable as we could reasonably hope to achieve.

This gold-standard allows us to score the performance of
the MTurk annotators. Figure 5(a) visualizes precision and
recall for each of the 20 annotators with overlap on the
re-labeled subset, sorted in ascending order based on the
number of submitted HITs. We see that most annotators
achieved very high precision and recall. Five of them are
not so reliable (precision< 60%), but they only finished a
few HITs. The overall precision and recall are 77.4% and
79.9% respectively. Compared with the study by Xiao et
al. [24] who observed that a large number of annotators had
0% accuracy, the annotators in our task are much more reli-
able. Apart from the task difference, this might also due to
our careful process design, especially the strict qualification
requirement.

To study the relationship of annotation time and accu-
racy, Figure 5(b) further shows the annotators’ performance
sorted by the time an annotator spent in finishing a HIT.
Annotators who spent an average time of 10–36 seconds
achieved consistent accuracy. Other annotators were not so
rigorous and only finished a few HITs. From this analysis,
we see no strong evidence of a correlation between annota-
tion time and accuracy.

Figures 6(a) and 6(b) give the category confusion ma-
trices for gold-standard labels and MTurk annotations, re-
spectively. We observe that the 20 categories are largely
exclusive, except in very few cases where two categories oc-
casionally appear together. For instance, “wedding recep-
tion” sometimes happens together with “wedding dance”,
and“dog”may appear in a video of“birthday party”. In con-
trast, MTurk annotators were sometimes confused by cate-
gory pairs such as “wedding dance” vs. “non-music perfor-
mance”, “music performance” vs. “non-music performance”,
etc. This probably reflects some confusion over our category
definitions.

Next we evaluate consolidation methods for merging an-
notations from multiple independent annotators. Here we
use a voting strategy similar to [6] and evaluate the number
of votes suitable to reach agreement. Figure 7 summarizes
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Figure 6: Category confusion matrices on the CCV subset. The machine confusion matrix is computed based
on classifiers using three visual/audio features (see Section 5).
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Figure 7: Accuracy of consolidated labels on the
CCV subset. We use a voting strategy to combine
annotations from multiple independent annotators.
E.g., for method 2-votes, a category is considered as
“true” in a video if two or more annotators agree.

the results. As expected, as more votes are required, preci-
sion goes up while recall drops. 2-votes emerges as the best
overall compromise (precision 83%; recall 90%). Therefore
we use this criterion as the consolidation strategy for the en-
tire CCV database. To boost the label precision, we further
manually filtered six categories3 whose precisions were below
80% to remove false positives remaining in the sets returned
by 2-votes. This step took several hours but significantly
boosted the label precision to about 94%.

5. MACHINE RECOGNITION ACCURACY
In this section we evaluate state-of-the-art automatic recog-

nition methods for consumer video understanding. In par-
ticular, we focus on testing popular features and classifiers.
While numerous techniques have recently been proposed for
video content recognition, e.g., informative feature selec-
tion [14], contextual diffusion [10], and temporal modeling
[18], we do not test them because they are all used on top
of the features/classifiers for incremental performance im-
provement. Our aim here is to evaluate components that
are critical in most visual recognition systems and assess
their performance level over the new database.
We divide the database into a training set and a test set,

containing 4659 and 4658 videos respectively. Positive sam-
ples of all the categories are evenly distributed into the train-
ing and test sets. The subset of 896 videos is put in the test
set to facilitate comparison with human recognition accu-

3“Swimming”, “biking”, “birthday”, “wedding reception”, “music
performance”, “non-music performance”.

racy. For each category, we train a one-versus-all classifier,
which is then used to rank the test set according to the prob-
ability that each category appears. Performance is measured
by precision-recall (PR) curves and average precision (AP;
area under uninterpolated PR curve). To aggregate perfor-
mance of multiple categories, we use mean AP (mAP).

5.1 Visual/Audio Features and Classifiers
We consider three visual and audio features that are ex-

pected to be useful and complementary for consumer video
analysis.

Static SIFT Feature: SIFT has been used in almost all
top-performing object and scene categorization systems. We
use two sparse detectors, Difference of Gaussian [15] and
Hessian Affine [16], to find local keypoints (informative im-
age patches). Each keypoint is described by a 128 dimen-
sional vector [15]. Since processing all frames is computa-
tionally prohibitive, we sample one frame every two seconds
(390k frames in total).

Spatial-Temporal Interest Points (STIP): Unlike SIFT,
which describes 2D local structure in images, STIP captures
a space-time volume in which pixel values have significant
variations in space and time. We use Laptev’s method [12]
to compute locations and descriptors of STIPs. The de-
tector was designed by extending the Harris operator to
space-time [12]. Histograms of Oriented Gradients (HOG;
72 dimensions) and Histograms of Optical Flow (HOF; 72
dimensions) descriptors are computed for the 3D local vol-
umes in the neighborhood of the detected STIPs. We use
a concatenated HOG-HOF feature (144 dimensions) as the
final descriptor.

MFCC Audio Feature: Besides the visual features SIFT
and STIP, audio is another useful cue for understanding con-
sumer videos. For this, we use the popular Mel-frequency
cepstral coefficients (MFCC). In audio processing, the mel-
frequency cepstrum (MFC) is a decorrelated representation
of the short-term power spectrum of a sound. MFCCs have
been widely used in many audio related applications, no-
tably speech recognition. Although there are other recent
developments on audio representation such as fingerprinting
[5], MFCCs are used in this work for their simplicity and
popularity. We compute an MFCC feature for every 32ms
time-window with 50% (16ms) overlap.
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Figure 8: Machine recognition accuracy. All the three audio/visual features are effective, and their fusion
produces significant gains for all the categories (best mAP 59.5%).

To convert feature sets with different cardinalities into
fixed-dimensional vectors, we adopt the bag-of-X represen-
tation that has been widely used for representing documents
(bag-of-words) and images (bag-of-visual-words) [22]. Given
a video clip, the features extracted from each frame or audio
time window are collapsed into a single bag. For SIFT, we
group two visual vocabularies of 500 words for DoG and Hes-
sian keypoints separately, and use two spatial layouts (1× 1
and 2 × 2) to generate bag-of-SIFT histograms of 5,000 di-
mensions (2 × 500 × (1 + 2 × 2)). For STIP and MFCC,
we use vocabularies of 5,000 words and 4,000 words respec-
tively. No spatial/temporal partitioning is used for either as
we have found it unhelpful. For all the three features, a soft-
weighting scheme is employed to alleviate the quantization
effects in generating bag-of-X features [9].
With the three bag-of-X representations, video categories

are learned using one-versus-all χ2 kernel SVM, which has
been proven suitable for classifying histogram-like features.
Using similar features and classifiers, we achieved the best
performance in the 2010 TRECVID MED task introduced
earlier [11]. In the following we analyze results on CCV.

5.2 Results and Analysis
Figure 8 gives AP performance of all the three features.

Comparing them individually, SIFT has the best mAP of
52.3%. It is especially good for categories with clear scene
patterns such as “beach” and “ice skating”. The STIP fea-
ture is not as good as SIFT, but seems more suitable for
categories with moving objects under complex/diverse back-
grounds, e.g., “wedding reception” and “non-music perfor-
mance”. MFCC audio features have the worst mAP (28.3%),
but are still very discriminative, considering that the mean
prior of the categories is only 4.2%. For categories with spe-
cific audio characteristics (e.g., “wedding ceremony”, “dog”
and “music performance”), MFCCs alone already show bet-
ter performance than both visual features.
We also evaluate the usefulness of combing multiple fea-

tures in Figure 8. The combination is done by average-fusion
of individual SVM predictions. Other methods with adap-
tive fusion weights such as multiple kernel learning might
further improve performance. From the results we see that
fusion is always helpful. SIFT+STIP improves the mAP
to 55.1% and further including MFCC audio achieves the
best performance of 59.5% (8.1% relative gain over the vi-
sual features). It is interesting to notice that audio is helpful
in almost every category, and for many the improvement is
very significant, e.g., “dog” (↑26%), “bird” (↑33%), birthday
(↑25%), “music performance” (↑13%), etc. This clearly con-
firms the importance of jointly modeling audio and visual
features for analyzing unconstrained consumer videos, and
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Figure 9: Human vs. machine in consumer video
understanding. We compare precision at two differ-
ent recall rates. Machines perform competitively for
several categories at 59% recall, but are significantly
below humans at a higher recall rate of 90%.

indicates a promising direction for future research. Figure 11
(at the end of the paper) shows per-category PR curves and
frames of the top 8 most confident videos in the test set.

5.3 Human vs. Machine
Finally we compare humans and machines in consumer

video understanding by evaluating their precision when re-
call rates are made equal. As seen in Figure 9, machines
perform close to the human level for several categories at
a moderate recall of 59%, but are far below humans at a
higher recall rate of 90%. This indicates that machines can
only find a portion of the true-positives with high confidence,
a conclusion supported by the PR curves shown in Figure 11,
where precision typically maintains a high value in the ini-
tial detection results but then plunges as more results are
returned. In contrast, humans are able to recognize almost
all (90%) of the relevant videos while maintaining a fairly
high precision, confirming that humans are still superior at
dealing with content diversity or “difficult” examples. This
no doubt reflects the human ability to leverage knowledge
learned over many years, far more comprehensive than the
small training set used by machines. The observed perfor-
mance gap between humans and machines is in line with a
previous study on image annotation by Parikh et al. [17],
who observed that human performance is about twice as
good as machines on the PASCAL VOC database [7].

Analyzing the 20 categories separately, we see that hu-
mans are much better at recognizing nonrigid objects (e.g.,
“cat” and “bird”) and highly complex events (e.g., “wedding
reception”). Machines are relatively close to humans for cat-
egories with unique background scenes (e.g., “basketball”)
or characteristic audio patterns (e.g., “wedding ceremony”).
Figure 10 shows some example results in the re-labeled sub-
set. Figure 6 (b-c) further compares confusion matrices of



wedding 
dance

(93.3% 
vs. 

92.9%) 

soccer
(87.5%

vs. 
53.8%)

cat
(93.5% 

vs. 
46.8%)

true positives false positives

found by 
human&machine

found by 
human only

found by 
machine only

found by 
machine only

found by 
human only

n/a

n/a

Figure 10: Example results of three categories, for
which humans always perform well (top percent-
ages) but machine performance varies (bottom per-
centages). Humans are able to recognize “difficult”
samples (the 2nd column) that computers cannot,
but sometimes they also miss true positives (the 3rd

column) and make mistakes (the 4th column).

humans and machines, indicating that machines make mis-
takes between categories like “cat” and “dog”, “baseball” and
“soccer”, “ice skating” and “skiing”, etc. These are probably
because the current machine feature representations are not
discriminative enough.

6. CONCLUSION
In this work, we constructed a new consumer video bench-

mark database that covers broader semantic categories than
existing corpora. Based on this database, we evaluated pop-
ular machine recognition techniques and conducted a com-
parative study of human and machine recognition perfor-
mance in video understanding. In the machine recognition
experiments, we observed significant gains by fusing audio
and visual features. We therefore envision a very interest-
ing and important research topic along this direction: deep-
joint audio-visual representation for video recognition, in
contrast to the shallow combination used in most systems
today. Through the analysis of human recognition, we found
that human performance is fairly stable across all the cate-
gories. Moreover, we observed that humans are much better
than machines at recognizing nonrigid objects, while current
machine recognition techniques approach human’s level for
categories with unique background scenes or sound patterns.
The database constructed by a rigorous process, the lessons
learned from implementing the popular machine recognition
system, and the analysis of human recognition performance
will be very useful for future research on consumer video
content analysis.
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Category Name & Definition PR Curves Top results in test set Category Name & Definition PR Curves Top results in test set 

Basketball (74.4%):  

One or more people playing 
basketball. The action of playing 
must be visible, either in 
foreground or background. 

 

Baseball (54.8%):  

One or more people playing 
baseball. The action of playing 
must be visible, either in 
foreground or background. 

 

Soccer (57.5%):  

One or more people playing 
soccer. The action of playing 
must be visible, either in 
foreground or background. 

 

Ice Skating (82.1%):  

One or more people skating. 
The action of skating must be 
visible, either in foreground or 
background. 

 

Skiing (73.3%):  

One or more people skiing. The 
action of skiing must be visible, 
either in foreground or 
background. 

 

Swimming (74.8%):  

One or more people swimming. 
The action of swimming must 
be visible, either in foreground 
or background. 

 

Biking (49.8%):  

One or more people biking. The 
action of biking must be visible, 
either in foreground or 
background. Static bikes and 
Motorbiking are not included. 

 

Cat (44.2%):  

One or more cats in the video. 

 

Dog (45.1%):  

One or more dogs in the video. 

 

Bird (35.5%):  

One or more birds in the video. 

 

Graduation (48.3%):  

Graduation ceremony with 
crowd, or one or more people 
wearing graduation caps and 
gowns. 

 
 

Birthday (57.5%):  

Birthday celebration should be 
visible. Usually include one of 
the following: birthday cake, 
balloons, wrapped presents, 
birthday caps, or the famous 
song.  

Wedding Reception (31.6%):  

A party held after wedding 
ceremony, mostly with food or 
wedding cake visible. 

 

Wedding Ceremony 
(64.4%):  

A ceremony for bride and 
groom to be united in marriage. 
Bride and groom should be 
visible. Location can be in a 
church, a park, etc.  

Wedding Dance (65.5%):  

Dancing event in the wedding by 
bride and groom or guests. Bride 
and groom may be invisible, but 
people should dance under 
wedding background (e.g., 
wedding cakes and flowers).  

Music Performance 
(70.4%): 

An event with one or more 
people singing or playing 
musical instruments. Other 
performance with background 
music is NOT included. Usually 
audience is visible. 

 

Non-Music Performance 
(69.5%):  

People performing, usually with 
audience visible and sometimes 
background music. Dancing, 
acting, drama, magic show, etc. 
Singing or music instrument 
performance is NOT included. 

 

Parade (66.3%):  

A procession of a big group of 
people, usually along a street, 
often in costume, and often 
accompanied by marching 
bands, floats or sometimes 
large balloons.  

Beach (69.0%):  

A geological landform along the 
shoreline of an ocean or sea. 
Part of the video must show 
sandy area. 

 

Playground (56.8%):  

A play area for children. Usually 
include equipments such as 
swing, slide, seesaw and 
sandbox. Playgrounds are 
usually outdoor. 

  

Figure 9: Category definition and machine recognition results including the best AP performance (in parenthesis), PR curves, and frames from top 8 videos in the test set (ordered from left to right, and top to bottom). This figure is best viewed in color with pdf magnification. 
PR Curve Legend: all SIFT STIP MFCC Cell Color Code:          Events           Objects           Scenes 

Figure 11: Category definitions and machine recognition results including the best AP performance (in
parenthesis), precision-recall curves, and frames from the top 8 detected videos in the test set (based on all
the three features; ordered from left to right and top to bottom). We see significant improvements resulting
from the fusion of multiple features, which achieves the best performance for all the categories. Top-ranked
videos in the test set are mostly correct; false positives are marked using dashed bounding boxes. This figure
is best viewed on screen with pdf magnification. Discernible faces are masked due to privacy concern.


