39 research outputs found
Seasonal pattern of peptic ulcer hospitalizations: analysis of the hospital discharge data of the Emilia-Romagna region of Italy
BACKGROUND:
Previous studies have reported seasonal variation in peptic ulcer disease (PUD), but few large-scale, population-based studies have been conducted.
METHODS:
To verify whether a seasonal variation in cases of PUD (either complicated or not complicated) requiring acute hospitalization exists, we assessed the database of hospital admissions of the region Emilia Romagna (RER), Italy, obtained from the Center for Health Statistics, between January 1998 and December 2005. Admissions were categorized by sex, age ( or = 75 yrs), site of PUD lesion (stomach or duodenum), main complication (hemorrhage or perforation), and final outcome (intended as fatal outcome: in-hospital death; nonfatal outcome: patient discharged alive). Temporal patterns in PUD admissions were assessed in two ways, considering a) total counts per single month and season, and b) prevalence proportion, such as the monthly prevalence of PUD admissions divided by the monthly prevalence of total hospital admissions, to assess if the temporal patterns in the raw data might be the consequence of seasonal and annual variations in hospital admissions per se in the region. For statistical analysis, the chi2 test for goodness of fit and inferential chronobiologic method (Cosinor and partial Fourier series) were used.
RESULTS:
Of the total sample of PUD patients (26,848 [16,795 males, age 65 +/- 16 yrs; 10,053 females, age 72 +/- 15 yrs, p or = 75 yrs of age. There were more cases of duodenal (DU). (89.8%) than gastric ulcer (GU) (3.6%), and there were 1,290 (4.8%) fatal events. Data by season showed a statistically difference with the lowest proportion of PUD hospital admissions in summer (23.3%) (p < 0.001), for total cases and rather all subgroups. Chronobiological analysis identified three major peaks of PUD hospitalizations (September-October, January-February, and April-May) for the whole sample (p = 0.035), and several subgroups, with nadir in July. Finally, analysis of the monthly prevalence proportions yielded a significant (p = 0.025) biphasic pattern with a main peak in August-September-October, and a secondary one in January-February.
CONCLUSIONS:
A seasonal variation in PUD hospitalization, characterized by three peaks of higher incidence (Autumn, Winter, and Spring) is observed. When data corrected by monthly admission proportions are analyzed, late summer-autumn and winter are confirmed as higher risk periods. The underlying pathophysiologic mechanisms are unknown, and need further studies. In subjects at higher risk, certain periods of the year could deserve an appropriate pharmacological protection to reduce the risk of PUD hospitalization
Color generalization across hue and saturation in chicks described by a simple (Bayesian) model
Color conveys important information for birds in tasks such as foraging and mate choice, but in the natural world color signals can vary substantially, so birds may benefit from generalizing responses to perceptually discriminable colors. Studying color generalization is therefore a way to understand how birds take account of suprathreshold stimulus variations in decision making. Former studies on color generalization have focused on hue variation, but natural colors often vary in saturation, which could be an additional, independent source of information. We combine behavioral experiments and statistical modeling to investigate whether color generalization by poultry chicks depends on the chromatic dimension in which colors vary. Chicks were trained to discriminate colors separated by equal distances on a hue or a saturation dimension, in a receptor-based color space. Generalization tests then compared the birds' responses to familiar and novel colors lying on the same chromatic dimension. To characterize generalization we introduce a Bayesian model that extracts a threshold color distance beyond which chicks treat novel colors as significantly different from the rewarded training color. These thresholds were the same for generalization along the hue and saturation dimensions, demonstrating that responses to novel colors depend on similarity and expected variation of color signals but are independent of the chromatic dimension