208 research outputs found

    Geometric realization and K-theoretic decomposition of C*-algebras

    Full text link
    Suppose that A is a separable C*-algebra and that G_* is a (graded) subgroup of K_*(A). Then there is a natural short exact sequence 0 \to G_* \to K_*(A) \to K_*(A)/G_* \to 0. In this note we demonstrate how to geometrically realize this sequence at the level of C*-algebras. As a result, we KK-theoretically decompose A as 0 \to A\otimes \Cal K \to A_f \to SA_t \to 0 where K_*(A_t) is the torsion subgroup of K_*(A) and K_*(A_f) is its torsionfree quotient. Then we further decompose A_t : it is KK-equivalent to \oplus_p A_p where K_*(A_p) is the p-primary subgroup of the torsion subgroup of K_*(A). We then apply this realization to study the Kasparov group K^*(A) and related objects.Comment: 9 pages.To appear in International J. Mat

    The fine structure of the Kasparov groups I: continuity of the KK-pairing

    Get PDF
    In this paper it is demonstrated that the Kasparov pairing is continuous with respect to the natural topology on the Kasparov groups, so that a KK-equivalence is an isomorphism of topological groups. In addition, we demonstrate that the groups have a natural pseudopolonais structure, and we prove that various KK-structural maps are continuous.Comment: 35 pages. To appear in J. Functional Analysi

    Existence of families of spacetimes with a Newtonian limit

    Get PDF
    J\"urgen Ehlers developed \emph{frame theory} to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ\lambda, which can be thought of as 1/c21/c^2, where cc is the speed of light. By construction, frame theory is equivalent to general relativity for λ>0\lambda >0, and reduces to Newtonian gravity for λ=0\lambda =0. Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to study the Newtonian limit \ep \searrow 0 (i.e. cc\to \infty). A number of ideas relating to frame theory that were introduced by J\"urgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from J\"urgen's work

    On globally non-trivial almost-commutative manifolds

    Get PDF
    Within the framework of Connes' noncommutative geometry, we define and study globally non-trivial (or topologically non-trivial) almost-commutative manifolds. In particular, we focus on those almost-commutative manifolds that lead to a description of a (classical) gauge theory on the underlying base manifold. Such an almost-commutative manifold is described in terms of a 'principal module', which we build from a principal fibre bundle and a finite spectral triple. We also define the purely algebraic notion of 'gauge modules', and show that this yields a proper subclass of the principal modules. We describe how a principal module leads to the description of a gauge theory, and we provide two basic yet illustrative examples.Comment: 34 pages, minor revision

    Cosmological post-Newtonian expansions to arbitrary order

    Full text link
    We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter \ep=v_T/c (0<\ep < \ep_0), where cc is the speed of light, and vTv_T is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M\cong [0,T)\times \Tbb^3, and converge as \ep \searrow 0 to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter \ep to any specified order with expansion coefficients that satisfy \ep-independent (nonlocal) symmetric hyperbolic equations

    Derivation of the Zakharov equations

    Get PDF
    This paper continues the study of the validity of the Zakharov model describing Langmuir turbulence. We give an existence theorem for a class of singular quasilinear equations. This theorem is valid for well-prepared initial data. We apply this result to the Euler-Maxwell equations describing laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic estimate that describes solutions of the Euler-Maxwell equations in terms of WKB approximate solutions which leading terms are solutions of the Zakharov equations. Because of transparency properties of the Euler-Maxwell equations, this study is led in a supercritical (highly nonlinear) regime. In such a regime, resonances between plasma waves, electromagnetric waves and acoustic waves could create instabilities in small time. The key of this work is the control of these resonances. The proof involves the techniques of geometric optics of Joly, M\'etivier and Rauch, recent results of Lannes on norms of pseudodifferential operators, and a semiclassical, paradifferential calculus

    Vanishing Viscosity Limits and Boundary Layers for Circularly Symmetric 2D Flows

    Full text link
    We continue the work of Lopes Filho, Mazzucato and Nussenzveig Lopes [LMN], on the vanishing viscosity limit of circularly symmetric viscous flow in a disk with rotating boundary, shown there to converge to the inviscid limit in L2L^2-norm as long as the prescribed angular velocity α(t)\alpha(t) of the boundary has bounded total variation. Here we establish convergence in stronger L2L^2 and LpL^p-Sobolev spaces, allow for more singular angular velocities α\alpha, and address the issue of analyzing the behavior of the boundary layer. This includes an analysis of concentration of vorticity in the vanishing viscosity limit. We also consider such flows on an annulus, whose two boundary components rotate independently. [LMN] Lopes Filho, M. C., Mazzucato, A. L. and Nussenzveig Lopes, H. J., Vanishing viscosity limit for incompressible flow inside a rotating circle, preprint 2006

    The Baum-Connes Conjecture via Localisation of Categories

    Get PDF
    We redefine the Baum-Connes assembly map using simplicial approximation in the equivariant Kasparov category. This new interpretation is ideal for studying functorial properties and gives analogues of the assembly maps for all equivariant homology theories, not just for the K-theory of the crossed product. We extend many of the known techniques for proving the Baum-Connes conjecture to this more general setting
    corecore