380 research outputs found

    Volcanism on Venus: Large shields and major accumulations of small domes

    Get PDF
    The outer layers of the Venusian lithosphere appear to dissipate heat from the interior through mantle-driven thermal anomalies (hot spots, swells). As a result, Venus exhibits diverse forms of thin-skin tectonism and magmatic transfer to and extrusion from countless numbers of volcanic centers (e.g., shields, paterae, domes) and volcano-tectonic complexes (e.g., coronae, arachnoids). What is known about the distribution and morphologies of major Venusian shields is summarized, and the evidence for possible structural control of major accumulations as long as 5000 km of small volcanic domes is described

    Comments on the tectonism of Venus

    Get PDF
    Preliminary tectonic mapping of Venus from Venera 15/16 images shows unquestionable evidence of at least limited horizontal tectonism. The majority of tectonic features on Venus have no relation to topography. In fact, many axes of disruption interconnect, and cross sharp topographic boundaries at large angles, thereby discounting gravity as the driving force. Compressional zones (CZ's), unlike Extensional zones (EZ's), tend to be discontinuous, and, whereas EZ's cross tectonic and topographic boundaries at various angles, many CZ's on Venus are subparallel to these boundaries. Strike-like faulting is curiously lacking from the mapping, possible due to the steep incidence angle of the radar, which is far from optimal for detecting faults of small throw. A chronology of horizontal crustal movements, and hence the analysis of Venus' thermal development, is large dependent on understanding the crater form features. Regardless of their uncertain origin, the craters still could hold the answer to whether, and to what extent, crustal shuffling is occurring on Venus

    Clotho Tessera, Venus: A fragment of Fortuna Tessera

    Get PDF
    Clotho Tessera, adjacent to southeast Lakshmi Planum, may provide additional evidence for lateral crustal motions, and a model for the origin of small tessera fragments. Clotho Tessera and Lakshmi Planum are so noticeably different, and in such close proximity, it is difficult to derive a reasonable model of their formation in situ. Squeezing of material out from beneath Lakshmi has been suggested as an origin for Moira Tessera, which is also adjacent to Lakshmi and 1400 km west of Clotho. However, a logical model of juxtaposition of the two different terrains, originally from points once distant, can be made for Clotho and Lakshmi (and perhaps other small tesserae as well). It is suggested that Clotho Tessera was once part of Fortuna Tessera, but was cut off by a transcurrent fault zone (the DLZ) striking perpendicular to the Sigrun rift and carried westward where it collided with Lakshmi Planum (forming Danu Montes). A gravity anomaly along the southern border of Lakshmi, in the area of Danu Montes, was interpreted as indicating subduction there, providing additional supporting evidence for the collision hypothesis. Diffusion of the DLZ with proximity to Sigrun Fossae may be due to either higher ductility near the postulated Sigrun rift, or to burial by flows away from the rift nearer to Valkyrie Fossae. Other possible examples of migrating tesserae occur elsewhere: small pieces of Ananke Tessera can be fit back together as though they had rifted apart, and the spreading apart of Ananke and Virilis Tesserae has been suggested because of their symmetric locations about the axis of an inferred spreading zone. Other tessera fragments appear to have been isolated by rifting, with little, if any, significant lateral motion (e.g., Meni and Tellus Tesserae, and Thethus and Fortuna Tesserae). The migrating terrain model for Clotho Tessera supports Sukhanov's interpretation of tesseral fragments as rafts of lighter crustal material

    An unconventional approach to imaging radar calibration

    Get PDF
    An unconventional approach to imaging radar calibration was considered for the entire system, including the imaging processing as a measurement instrument. The technique made use of a calibrated aircraft scatterometer as a secondary standard to measure the backscatter (sigma zero) of large units of constant roughness. These measured roughness units when viewed by an imaging radar system can be used to provide gray scale level, corresponding to known degrees of roughness. To obtain a calibrated aircraft scatterometer, a homogeneous smooth surface was measured by both the aircraft scatterometer and a sphere calibrated ground system. This provided a measure of the precision and accuracy of the aircraft system. The aircraft system was then used to measure large roughness units in the Death Valley, California area. Transfer of the measured roughness units to radar imagery was demonstrated

    Impact cratering and the surface age of Venus: The Pre-Magellan controversy

    Get PDF
    The average surface age of a planet is a major indicator of the level of its geologic activity and thus of the dynamics of its interior. Radar images obtained by Venera 15/16 from the northern quarter of the Venus (lat 30 to 90 degs) reveal about 150 features that resemble impact craters, and they were so interpreted by Soviet investigators B. A. Ivanov, A. T. Basilevsky, and their colleagues. These features range in diameter from about 10 to 145 km. Their areal density is remarkably similar to the density of impact structures found on the American and European continental shields. The basic difference between the Soviet and American estimates of the average surface age of Venus's northern quarter is due to which crater-production rate is used for the Venusian environment. Cratering rates based on the lunar and terrestrial cratering records, as well as statistical calculations based on observed and predicted Venus-crossing asteroids and comets, have been used in both the Soviet and American calculations. The single largest uncertainty in estimating the actual cratering rates near Venus involves the shielding effect of the atmosphere

    The damping and structural properties of dragonfly and damselfly wings during dynamic movement

    Get PDF
    For flying insects, stability is essential to maintain the orientation and direction of motion in flight. Flight instability is caused by a variety of factors, such as intended abrupt flight manoeuvres and unwanted environmental disturbances. Although wings play a key role in insect flight stability, little is known about their oscillatory behaviour. Here we present the first systematic study of insect wing damping. We show that different wing regions have almost identical damping properties. The mean damping ratio of fresh wings is noticeably higher than that previously thought. Flight muscles and hemolymph have almost no ‘direct’ influence on the wing damping. In contrast, the involvement of the wing hinge can significantly increase damping. We also show that although desiccation reduces the wing damping ratio, rehydration leads to full recovery of damping properties after desiccation. Hence, we expect hemolymph to influence the wing damping indirectly, by continuously hydrating the wing system

    Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    Get PDF
    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry

    Low-emissivity impact craters on Venus

    Get PDF
    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles

    Tempo and mode of early gene loss in endosymbiotic bacteria from insects

    Get PDF
    BACKGROUND: Understanding evolutionary processes that drive genome reduction requires determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene loss could be driven by the selective importance of genes. We used a parsimony method to reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index, or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-living bacteria or in pairs of symbionts. RESULTS: Our results demonstrate that genes lost in the early stages of symbiosis were on average less selectively constrained than genes conserved in any of the extant symbiotic strains studied. These results also extend to more recent events of gene losses (i.e. among Buchnera strains) that still tend to concentrate on genes with low adaptive bias in E. coli and high evolutionary rates both in free-living and in symbiotic lineages. In addition, we analyzed the physical organization of gene losses for early steps of symbiosis acquisition under the hypothesis of a common origin of different symbioses. In contrast with previous findings we show that gene losses mostly occurred through loss of rather small blocks and mostly in syntenic regions between at least one of the symbionts and present-day E. coli. CONCLUSION: At both ancient and recent stages of symbiosis evolution, gene loss was at least partially influenced by selection, highly conserved genes being retained more readily than lowly conserved genes: although losses might result from drift due to the bottlenecking of endosymbiontic populations, we demonstrated that purifying selection also acted by retaining genes of greater selective importance

    The damping properties of the foam‑filled shaft of primary feathers of the pigeon Columba livia

    Get PDF
    The avian feather combines mechanical properties of robustness and flexibility while maintaining a low weight. Under periodic and random dynamic loading, the feathers sustain bending forces and vibrations during flight. Excessive vibrations can increase noise, energy consumption, and negatively impact flight stability. However, damping can alter the system response, and result in increased stability and reduced noise. Although the structure of feathers has already been studied, little is known about their damping properties. In particular, the link between the structure of shafts and their damping is unknown. This study aims at understanding the structure-damping relationship of the shafts. For this purpose, laser Doppler vibrometry (LDV) was used to measure the damping properties of the feather shaft in three segments selected from the base, middle, and tip. A combination of scanning electron microscopy (SEM) and micro-computed tomography (μCT) was used to investigate the gradient microstructure of the shaft. The results showed the presence of two fundamental vibration modes, when mechanically excited in the horizontal and vertical directions. It was also found that the base and middle parts of the shaft have higher damping ratios than the tip, which could be attributed to their larger foam cells, higher foam/cortex ratio, and higher percentage of foam. This study provides the first indication of graded damping properties in feathers
    • …
    corecore