394 research outputs found

    Analysis of OPM potentials for multiplet states of 3d transition metal atoms

    Full text link
    We apply the optimized effective potential method (OPM) to the multiplet energies of the 3dn^n transition metal atoms, where the orbital dependence of the energy functional with respect to orbital wave function is the single-configuration HF form. We find that the calculated OPM exchange potential can be represented by the following two forms. Firstly, the difference between OPM exchange potentials of the multiplet states can be approximated by the linear combination of the potentials derived from the Slater integrals F2(3d,3d)F^2({\rm 3d,3d}) and F4(3d,3d)F^4({\rm 3d,3d}) for the average energy of the configuration. Secondly, the OPM exchange potential can be expressed as the linear combination of the OPM exchange potentials of the single determinants.Comment: 15 pages, 6 figures, to be published in J. Phys.

    The nuclear receptor LXRα controls the functional specialization of splenic macrophages.

    Get PDF
    Macrophages are professional phagocytic cells that orchestrate innate immune responses and have considerable phenotypic diversity at different anatomical locations. However, the mechanisms that control the heterogeneity of tissue macrophages are not well characterized. Here we found that the nuclear receptor LXRα was essential for the differentiation of macrophages in the marginal zone (MZ) of the spleen. LXR-deficient mice were defective in the generation of MZ and metallophilic macrophages, which resulted in abnormal responses to blood-borne antigens. Myeloid-specific expression of LXRα or adoptive transfer of wild-type monocytes restored the MZ microenvironment in LXRα-deficient mice. Our results demonstrate that signaling via LXRα in myeloid cells is crucial for the generation of splenic MZ macrophages and identify an unprecedented role for a nuclear receptor in the generation of specialized macrophage subsets

    SMA CO(J=6-5) and 435 micron interferometric imaging of the nuclear region of Arp 220

    Full text link
    We have used the Submillimeter Array (SMA) to make the first interferometric observations (beam size ~1") of the 12CO J=6-5 line and 435 micron (690 GHz) continuum emission toward the central region of the nearby ULIRG Arp 220. These observations resolve the eastern and western nuclei from each other, in both the molecular line and dust continuum emission. At 435 micron, the peak intensity of the western nucleus is stronger than the eastern nucleus, and the difference in peak intensities is less than at longer wavelengths. Fitting a simple model to the dust emission observed between 1.3 mm and 435 micron suggests that dust emissivity power law index in the western nucleus is near unity and steeper in the eastern nucleus, about 2, and that the dust emission is optically thick at the shorter wavelength. Comparison with single dish measurements indicate that the interferometer observations are missing ~60% of the dust emission, most likely from a spatially extended component to which these observations are not sensitive. The 12CO J=6-5 line observations clearly resolve kinematically the two nuclei. The distribution and kinematics of the 12CO J=6-5 line appear to be very similar to lower J CO lies observed at similar resolution. Analysis of multiple 12CO line intensities indicates that the molecular gas in both nuclei have similar excitation conditions, although the western nucleus is warmer and denser. The excitation conditions are similar to those found in other extreme environments, including M82, Mrk 231, and BR 1202-0725. Simultaneous lower resolution observations of the 12CO, 13CO, and C18O J=2-1 lines show that the 13CO and C18O lines have similar intensities, which suggests that both of these lines are optically thick, or possibly that extreme high mass star formation has produced in an overabundance of C18O.Comment: 13 pages (emulateapj), 10 figures, Accepted for publication in Ap

    Renal cell carcinoma with a tumor thrombus in the ureter: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal cell carcinoma (RCCs) is the most common malignancy of the kidney. When RCC progresses, it is known to form tumor thrombus in the renal vein and/or inferior vena cava. However, RCC does not normally form tumor thrombus in the ureter or renal pelvis.</p> <p>Case presentation</p> <p>A 43-year-old man presented to our department for the treatment of a renal tumor with asymptomatic gross hematuria. In a dynamic CT study, contrast enhancement revealed a tumor suspected to be RCC, but atypical finding as a tumor thrombus that filled the renal pelvis and the whole ureter was also observed. Nephroureterectomy was performed, and the tumor was diagnosed histopathologically as RCC.</p> <p>Conclusion</p> <p>We report here a very rare case of RCC with a tumor thrombus in the whole ureter.</p

    Dynamical mass generation of a two-component fermion in Maxwell-Chern-Simons QED_3: The lowest ladder approximation

    Full text link
    Dynamical mass generation of a two-component fermion in QED3QED_3 with a Chern-Simons term is investigated by solving the Schwinger-Dyson equation formulated in the lowest ladder approximation. Dependence of the dynamical fermion mass on a gauge-fixing parameter, a gauge coupling constant, and a topological mass is examined by approximated analytical and also numerical methods. The inclusion of the Chern-Simons term makes impossible to choose a peculiar gauge in which a wave function renormalization is absent. The numerical evaluation shows that the wave function renormalization is fairly close to 1 in the Landau gauge. It means that this gauge is still a specific gauge where the Ward-Takahashi identity is satisfied approximately. We also find that the dynamical mass is almost constant if the topological mass is larger than the coupling constant, while it decreases when the topological mass is comparable to or smaller than the coupling constant and tends to the value in QED3QED_3 without the Chern-Simons term.Comment: 22 pages, 9 figures, Version to appear in Phys. Rev.

    Regulation of Recombination between gtfB/gtfC

    Get PDF
    Streptococcus mutans produces 3 types of glucosyltransferases (GTFs), whose cooperative action is essential for cellular adhesion. The recombinase A (RecA) protein is required for homologous recombination. In our previous study, we isolated several strains with a smooth colony morphology and low GTF activity, characteristics speculated to be derived from the GTF fusions. The purpose of the present study was to investigate the mechanism of those fusions. S. mutans strain MT8148 was grown in the presence of recombinant RecA (rRecA) protein, after which smooth colonies were isolated. The biological functions and sequences of the gtfB and gtfC genes of this as well as other clinical strains were determined. The sucrose-dependent adherence rates of those strains were reduced as compared to that of MT8148. Determination of the sequences of the gtfB and gtfC genes showed that an approximately 3500 bp region was deleted from the area between them. Furthermore, expression of the recA gene was elevated in those strains as compared to MT8148. These results suggest that RecA has an important role in fusions of gtfB and gtfC genes, leading to alteration of colony morphology and reduction in sucrose-dependent adhesion
    • 

    corecore