2,656 research outputs found

    The evolution of coronal mass ejections in the inner heliosphere : Implementing the spheromak model with EUHFORIA

    Get PDF
    Aims. We introduce a new model for coronal mass ejections (CMEs) that has been implemented in the magnetohydrodynamics (MHD) inner heliosphere model EUHFORIA. Utilising a linear force-free spheromak (LFFS) solution, the model provides an intrinsic magnetic field structure for the CME. As a result, the new model has the potential to predict the magnetic components of CMEs at Earth. In this paper, we present the implementation of the new model and show the capability of the new model. Methods. We present initial validation runs for the new magnetised CME model by considering the same set of events as used in the initial validation run of EUHFORIA that employed the Cone model. In particular, we have focused on modelling the CME that was responsible for creating the largest geomagnetic disturbance (Dst index). Two scenarios are discussed: one where a single magnetised CME is launched and another in which we launch all five Earth-directed CMEs that were observed during the considered time period. Four out of the five CMEs were modelled using the Cone model. Results. In the first run, where the propagation of a single magnetized CME is considered, we find that the magnetic field components at Earth are well reproduced as compared to in-situ spacecraft data. Considering a virtual spacecraft that is separated approximately seven heliographic degrees from the position of Earth, we note that the centre of the magnetic cloud is missing Earth and a considerably larger magnetic field strength can be found when shifting to that location. For the second run, launching four Cone CMEs and one LFFS CME, we notice that the simulated magnetised CME is arriving at the same time as in the corresponding full Cone model run. We find that to achieve this, the speed of the CME needs to be reduced in order to compensate for the expansion of the CME due to the addition of the magnetic field inside the CME. The reduced initial speed of the CME and the added magnetic field structure give rise to a very similar propagation of the CME with approximately the same arrival time at 1 au. In contrast to the Cone model, however, the magnetised CME is able to predict the magnetic field components at Earth. However, due to the interaction between the Cone model CMEs and the magnetised CME, the magnetic field amplitude is significantly lower than for the run using a single magnetised CME. Conclusions. We have presented the LFFS model that is able to simulate and predict the magnetic field components and the propagation of magnetised CMEs in the inner heliosphere and at Earth. We note that shifting towards a virtual spacecraft in the neighbourhood of Earth can give rise to much stronger magnetic field components. This gives the option of adding a grid of virtual spacecrafts to give a range of values for the magnetic field components.Peer reviewe

    Correlated Prompt Fission Data in Transport Simulations

    Full text link
    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and Îł\gamma-ray~observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and \gray~spectra, angular distributions of the emitted particles, nn-nn, nn-Îł\gamma, and Îł\gamma-Îł\gamma~correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA~and CGMF~codes have been developed to follow the sequential emissions of prompt neutrons and Îł\gamma-rays~from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and Îł\gamma~emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the Îł\gamma-ray~strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. (See text for full abstract.)Comment: 39 pages, 57 figure files, published in Eur. Phys. J. A, reference added this versio

    Local host response following an intramammary challenge with Staphylococcus fleurettii and different strains of Staphylococcus chromogenes in dairy heifers

    Get PDF
    Coagulase-negative staphylococci (CNS) are a common cause of subclinical mastitis in dairy cattle. The CNS inhabit various ecological habitats, ranging between the environment and the host. In order to obtain a better insight into the host response, an experimental infection was carried out in eight healthy heifers in mid-lactation with three different CNS strains: a Staphylococcus fleurettii strain originating from sawdust bedding, an intramammary Staphylococcus chromogenes strain originating from a persistent intramammary infection (S. chromogenes IM) and a S. chromogenes strain isolated from a heifer's teat apex (S. chromogenes TA). Each heifer was inoculated in the mammary gland with 1.0 x 10(6) colony forming units of each bacterial strain (one strain per udder quarter), whereas the remaining quarter was infused with phosphate-buffered saline. Overall, the CNS evoked a mild local host response. The somatic cell count increased in all S. fleurettii-inoculated quarters, although the strain was eliminated within 12 h. The two S. chromogenes strains were shed in larger numbers for a longer period. Bacterial and somatic cell counts, as well as neutrophil responses, were higher after inoculation with S. chromogenes IM than with S. chromogenes TA. In conclusion, these results suggest that S. chromogenes might be better adapted to the mammary gland than S. fleurettii. Furthermore, not all S. chromogenes strains induce the same local host response

    Development of strategies for effective communication of food risks and benefits across Europe: Design and conceptual framework of the FoodRisC project

    Get PDF
    The FoodRisC project is funded under the Seventh Framework Programme (CORDIS FP7) of the European Commission; Grant agreement no.: 245124. Copyright @ 2011 Barnett et al.BACKGROUND: European consumers are faced with a myriad of food related risk and benefit information and it is regularly left up to the consumer to interpret these, often conflicting, pieces of information as a coherent message. This conflict is especially apparent in times of food crises and can have major public health implications. Scientific results and risk assessments cannot always be easily communicated into simple guidelines and advice that non-scientists like the public or the media can easily understand especially when there is conflicting, uncertain or complex information about a particular food or aspects thereof. The need for improved strategies and tools for communication about food risks and benefits is therefore paramount. The FoodRisC project ("Food Risk Communication - Perceptions and communication of food risks/benefits across Europe: development of effective communication strategies") aims to address this issue. The FoodRisC project will examine consumer perceptions and investigate how people acquire and use information in food domains in order to develop targeted strategies for food communication across Europe.METHODS/DESIGN: This project consists of 6 research work packages which, using qualitative and quantitative methodologies, are focused on development of a framework for investigating food risk/benefit issues across Europe, exploration of the role of new and traditional media in food communication and testing of the framework in order to develop evidence based communication strategies and tools. The main outcome of the FoodRisC project will be a toolkit to enable coherent communication of food risk/benefit messages in Europe. The toolkit will integrate theoretical models and new measurement paradigms as well as building on social marketing approaches around consumer segmentation. Use of the toolkit and guides will assist policy makers, food authorities and other end users in developing common approaches to communicating coherent messages to consumers in Europe.DISCUSSION: The FoodRisC project offers a unique approach to the investigation of food risk/benefit communication. The effective spread of food risk/benefit information will assist initiatives aimed at reducing the burden of food-related illness and disease, reducing the economic impact of food crises and ensuring that confidence in safe and nutritious food is fostered and maintained in Europe.This article is available through the Brunel Open Access Publishing Fund

    Analysis of pancreas tissue in a child positive for islet cell antibodies

    Get PDF
    Conclusions/interpretation These observations suggest that positivity for ICA alone, even when lasting for more than 1 year, is not associated with inflammatory changes in the islets. However, it is most likely that the pancreatic islets were infected by an enterovirus in this child

    Consumer perceptions of beef healthiness: results from a qualitative study in four European countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Consumer perception of the healthiness of beef is an important determinant of beef consumption. However, little is known about how consumers perceive the healthiness of beef. The aim of this study is to shed light on the associations between beef and health.</p> <p>Methods</p> <p>Eight focus group discussions were conducted in four European countries (France, UK, Germany, Spain), each consisting of seven to nine participants. A content analysis was performed on the transcripts of these discussions.</p> <p>Results</p> <p>Although beef was generally perceived as healthful, focus group participants expected positive as well as negative effects of beef consumption on their health. Labelled, branded, fresh and lean beef were perceived as signalling healthful beef, in contrast with further processed and packaged beef. Consumers felt that their individual choices could make a difference with respect to the healthiness of beef consumed. Focus group participants were not in favour of improving beef healthiness during processing, but rather focussed on appropriate consumption behaviour and preparation methods.</p> <p>Conclusions</p> <p>The individual responsibility for health implies that consumers should be able to make correct judgements about how healthful their food is. However, the results of this study indicate that an accurate assessment of beef healthiness is not always straightforward. The presented results on consumer perceptions of beef healthiness provide insights into consumer decision making processes, which are important for the innovation and product differentiation in the European beef sector, as well as for public health policy decisions related to meat consumption in general and beef consumption in particular.</p

    Effect of the Initial Shape of Coronal Mass Ejections on 3-D MHD Simulations and Geoeffectiveness Predictions

    Get PDF
    Coronal mass ejections (CMEs) are the major space weather drivers, and an accurate modeling of their onset and propagation up to 1 AU represents a key issue for more reliable space weather forecasts. In this paper we use the newly developed European Heliospheric FORecasting Information Asset (EUHFORIA) heliospheric model to test the effect of different CME shapes on simulation outputs. In particular, we investigate the notion of "spherical" CME shape, with the aim of bringing to the attention of the space weather community the great implications of the CME shape implementation details for simulation results and geoeffectiveness predictions. We take as case study an artificial Earth-directed CME launched on 6 June 2008, corresponding to a period of quiet solar wind conditions near Earth. We discuss the implementation of the cone model used to inject the CME into the modeled ambient solar wind, running several simulations of the event and investigating the outputs in interplanetary space and at different spacecraft and planetary locations. We apply empirical relations to simulation outputs at L1 to estimate the expected CME geoeffectiveness in terms of the magnetopause stand-off distance and the induced Kp index. Our analysis shows that talking about spherical CMEs is ambiguous unless one has detailed information on the implementation of the CME shape in the model. All the parameters specifying the CME shape in the model significantly affect simulation results at 1 AU as well as the predicted CME geoeffectiveness, confirming the pivotal role played by the shape implementation details in space weather forecasts.Peer reviewe

    Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia (vol 32, pg 788, 2018)

    Get PDF
    Following the publication of this article the authors noted that data describing precisely where phosphorylation sites in proteins modulated following JAK1 or JAK3 inhibition in mutant T-ALL samples was not clearly annotated. Therefore an additional sheet has been added to Supplementary Table 2

    Code Comparison in Galaxy Scale Simulations with Resolved Supernova Feedback: Lagrangian vs. Eulerian Methods

    Get PDF
    We present a suite of high-resolution simulations of an isolated dwarf galaxy using four different hydrodynamical codes: {\sc Gizmo}, {\sc Arepo}, {\sc Gadget}, and {\sc Ramses}. All codes adopt the same physical model which includes radiative cooling, photoelectric heating, star formation, and supernova (SN) feedback. Individual SN explosions are directly resolved without resorting to sub-grid models, eliminating one of the major uncertainties in cosmological simulations. We find reasonable agreement on the time-averaged star formation rates as well as the joint density-temperature distributions between all codes. However, the Lagrangian codes show significantly burstier star formation, larger supernova-driven bubbles, and stronger galactic outflows compared to the Eulerian code. This is caused by the behavior in the dense, collapsing gas clouds when the Jeans length becomes unresolved: gas in Lagrangian codes collapses to much higher densities than in Eulerian codes, as the latter is stabilized by the minimal cell size. Therefore, more of the gas cloud is converted to stars and SNe are much more clustered in the Lagrangian models, amplifying their dynamical impact. The differences between Lagrangian and Eulerian codes can be reduced by adopting a higher star formation efficiency in Eulerian codes, which significantly enhances SN clustering in the latter. Adopting a zero SN delay time reduces burstiness in all codes, resulting in vanishing outflows as SN clustering is suppressed.Comment: accepted version by ApJ (including a new simulation in Appendix B suggested by the referee
    • …
    corecore