61 research outputs found

    Halotolerant bacteria in the efflorescences of a deteriorated church

    Get PDF
    7 pages, 6 figures, 3 tables, 18 references.--Proceedings of the 5th International Symposium, celebrado del 5-8, abril, 2000, en Sevilla, España.[EN]: A study on the composition of the efflorescences from the Church of Saint Jerome, Granada, Spain, and their influence on the distribution ofthe bacterial communities was carried out. The composition of the efflorescences varied depending on the location of the sampling point. The colony foming units (cfu) was related with the type of salt, with a clear difference between halite and epsomite/hexahydrite. The most abundant genera were Bacillus and Micrococcus and the abundance of bacilli could be explained by their osmotic adaptation to halophilic environments.[ES]: Se ha determinado la composición de las eflorescencias de la iglesia de San Jerónimo, en Granada, España, y relacionado con la presencia de comunidades específicas de bacterias. Existe una conexión entre el tipo de sales y las comunidades bacterianas; así, la epsomita, la sal más abundante en el templo, origina la selección de comunidades capaces de crecer a concentraciones de hasta,15% de esta sal. Sin embargo, las bacterias que basan su halotolerancia en la halita presentan un crecimiento comparativamente menor y no son significativamente estimuladas por la presencia de epsomita. Los géneros más abundantes son Bacillus y Micrococcus. La abundancia de bacilos se debe a su adaptación osmótica a ambientes salinos.This work was supported by the European Commission, project ENV4-CT98-0705, and the Research Groups RNM-179 and 201 from the Community of Andalusia.Peer reviewe

    Holistic Approach to the Restoration of a Vandalized Monument: The Cross of the Inquisition, Seville City Hall, Spain

    Get PDF
    The Cross of the Inquisition, sculpted in 1903 and raised on a column with a fluted shaft and ornamented with vegetable garlands, is located in a corner of the Plateresque façade of the Seville City Hall. The Cross was vandalized in September 2019 and the restoration concluded in September 2021. A geological and microbiological study was carried out in a few small fragments. The data are consistent with the exposure of the Cross of the Inquisition to an urban environment for more than 100 years. During that time, a lichen community colonized the Cross and the nearby City Hall façades. The lichens, bryophytes and fungi colonizing the limestone surface composed an urban community, regenerated from the remains of the original communities, after superficial cleaning of the limestone between 2008 and 2010. This biological activity was detrimental to the integrity of the limestone, as showed by the pitting and channels, which evidence the lytic activity of organisms on the stone surface. Stone consolidation was achieved with Estel 1000. Preventol RI80, a biocide able to penetrate the porous limestone and active against bacteria, fungi, lichens, and bryophytes, was applied in the restoration.The research was funded by Atelier Samthiago and the restoration of the Cross of the Inquisition was supported by the Seville City Hall

    New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain)

    Get PDF
    In the absence of sunlight, caves harbor a great diversity of microbial colonies to extensive biofilms with different sizes and colors visible to the naked eye. One of the most widespread and visible types of biofilm are those with yellow hues that can constitute a serious problem for the conservation of cultural heritage in many caves, such as Pindal Cave (Asturias, Spain). This cave, declared a World Heritage Site by UNESCO for its Paleolithic parietal art, shows a high degree of development of yellow biofilms that represents a real threat to the conservation of painted and engraved figures. This study aims to: 1) identify the microbial structures and the most characteristic taxa composing the yellow biofilms, 2) seek the linked microbiome reservoir primarily contributing to their growth; 3) seed light on the driving vectors that contribute to their formation and determine the subsequent proliferation and spatial distribution. To achieve this goal, we used amplicon-based massive sequencing, in combination with other techniques such as microscopy, in situ hybridization and environmental monitoring, to compare the microbial communities of yellow biofilms with those of drip waters, cave sediments and exterior soil. The results revealed microbial structures related to the phylum Actinomycetota and the most characteristic bacteria in yellow biofilms, represented by the genera wb1-P19, Crossiella, Nitrospira, and Arenimonas. Our findings suggest that sediments serve as potential reservoirs and colonization sites for these bacteria that can develop into biofilms under favorable environmental and substrate conditions, with a particular affinity for speleothems and rugged-surfaced rocks found in condensation-prone areas. This study presents an exhaustive study of microbial communities of yellow biofilms in a cave, which could be used as a procedure for the identification of similar biofilms in other caves and to design effective conservation strategies in caves with valuable cultural heritage.This research was supported by the Spanish Ministry of Science and Innovation through project PID2019-110603RB-I00 and the collaboration of PID2020-114978GB-I00 project, MCIN/AEI/FEDER, UE/10.13039/501100011033. This is a contribution from CSIC Interdisciplinary Thematic Platform Open Heritage: Research and Society (PTI-PAIS)

    Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics

    Get PDF
    Subterranean ecosystems play an active role in the global carbon cycle, yet only a few studies using indirect methods have focused on the role of the cave microbiota in this critical cycle. Here we present pioneering research based on in situ real-time monitoring of CO2 and CH4 diffusive fluxes and concurrent δ13C geochemical tracing in caves, combined with 16S microbiome analysis. Our findings show that cave sediments are promoting continuous CH4 consumption from cave atmosphere, resulting in a significant removal of 65% to 90%. This research reveals the most effective taxa and metabolic pathways in consumption and uptake of greenhouse gases. Methanotrophic bacteria were the most effective group involved in CH4 consumption, namely within the families Methylomonaceae, Methylomirabilaceae and Methylacidiphilaceae. In addition, Crossiella and Nitrosococcaceae wb1-P19 could be one of the main responsible of CO2 uptake, which occurs via the Calvin-Benson-Bassham cycle and reversible hydration of CO2. Thus, syntrophic relationships exist between Crossiella and nitrifying bacteria that capture CO2, consume inorganic N produced by heterotrophic ammonification in the surface of sediments, and induce moonmilk formation. Moonmilk is found as the most evolved phase of the microbial processes in cave sediments that fixes CO2 as calcite and intensifies CH4 oxidation. From an ecological perspective, cave sediments act qualitatively as soils, providing fundamental ecosystem services (e.g. nutrient cycling and carbon sequestration) with direct influence on greenhouse gas emissions.This work was supported by the Spanish Ministry of Science, Innovation through project PID2019-110603RB-I00, MCIN/AEI/FEDER, UE/10.13039/501100011033 and with collaboration of projects RTI2018-099052-B-I00 and PID2020-114978GB-I00. This research has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 844535 — MIFLUKE

    Microbial Activity in Subterranean Ecosystems: Recent Advances

    Get PDF
    Of the several critical challenges present in environmental microbiology today, one is the assessment of the contribution of microorganisms in the carbon cycle in the Earth-climate system. Karstic subterranean ecosystems have been overlooked until recently. Covering up to 25% of the land surface and acting as a rapid CH4 sink and alternately as a CO2 source or sink, karstic subterranean ecosystems play a decisive role in the carbon cycle in terms of their contribution to the global balance of greenhouse gases. Recent data indicate that microbiota must play a significant ecological role in the biogeochemical processes that control the composition of the subterranean atmosphere, as well as in the availability of nutrients for the ecosystem. Nevertheless, there are still essential gaps in our knowledge concerning the budgets of greenhouse gases at the ecosystem scale and the possible feedback mechanisms between environmental-microclimatic conditions and the rates and type of activity of microbial communities in subterranean ecosystems. Another challenge is searching for bioactive compounds (antibiotics) used for treating human diseases. At present, there is a global health emergency and a strong need for novel biomolecules. In recent decades, great research efforts have been made to extract antibiotics from marine organisms. More recently, caves have been receiving considerable attention in search of novel antibiotics. Cave methanotrophic and heterotrophic bacteria are producers of bioactive compounds and may be potential sources of metabolites with antibacterial, antifungal or anticancer activities of interest in pharmacological and medical research, as well as enzymes with a further biotechnological use. Here we also show that bacteria isolated from mines, a still unexplored niche for scientists in search of novel compounds, can be a source of novel secondary metabolites.Financial support was obtained through project 0483_PROBIOMA_5_E, co-financed by the European Regional Development Fund within the framework of the Interreg V-A Spain-Portugal program (POCTEP) 2014–2020. This work was also supported by the Spanish Ministry of Economy and Competitiveness through projects CGL2016-75590-P and PID2019-110603RB-I00, AEI/FEDER, UE

    Crossiella, a Rare Actinomycetota Genus, Abundant in the Environment

    Get PDF
    The genus Crossiella contains two species, C. equi, causing nocardioform placentitis in horses, and C. cryophila, an environmental bacterium. Apart from C. equi, which is not discussed here, environmental Crossiella is rarely reported in the literature; thus, it has not been included among “rare actinobacteria”, whose isolation frequency is very low. After C. cryophila, only five reports cover the isolation of Crossiella strains. However, the frequency of published papers on environmental Crossiella has increased significantly in recent years due to the extensive use of next-generation sequencing (NGS) and a huge cascade of data that has improved our understanding of how bacteria occur in the environment. In the last five years, Crossiella has been found in different environments (caves, soils, plant rhizospheres, building stones, etc.). The high abundance of Crossiella in cave moonmilk indicates that this genus may have an active role in moonmilk formation, as evidenced by the precipitation of calcite, witherite, and struvite in different culture media. This review provides an overview of environmental Crossiella, particularly in caves, and discusses its role in biomineralization processes and bioactive compound production.This research was funded by the projects PID2020-114978GB-I00 and PID2019-110603RB-I00. The Malaga City Council financed data from the archaeological basement of the Thyssen Museum of Malaga through a conservation contract for this Roman site

    The deterioration of Circular Mausoleum, Roman Necropolis of Carmona, Spain

    Get PDF
    The Circular Mausoleum tomb in the Roman Necropolis of Carmona was carved on a calcarenite sequence in an ancient quarry located in the town of Carmona, Southern Spain. This rock-cut tomb, representative of Roman burial practices, currently suffers from serious deterioration. A detailed survey over several years permitted the identification of the main tomb's pathologies and damaging processes, which include loss of material (scaling, flaking, granular disintegration), surface modifications (efflorescences, crusts and deposits) and extensive biological colonization. The results obtained in this study indicated that anthropogenic changes were largely responsible and enhanced the main alteration mechanisms observed in the Circular Mausoleum. Based on the deterioration diagnosis, effective corrective actions were proposed. This study shows that any conservative intervention in the interior of the tomb should be preceded by accurate in situ measurements and laboratory analyses to ascribe the source of the deterioration damages and thus designing effective treatments.This research was funded by the Consejeria de Cultura, Junta de Andalucia, the Spanish Ministry of Science and Innovation project CGL2010-17183, and the program Torres Quevedo (PTQ 13-06296 and PTQ 12-05601)

    Origen bacteriano de espelotemas tipo moonmilk en ambiente kárstico (Cueva de Altamira, Cantabria, España)

    Get PDF
    Los espeleotemas subaéreos de tipo moonmilk de la Cueva de Altamira están constituidos fundamentalmente por un entramado de cristales aciculares calcíticos (needlefiber calcite, NFC) y filamentos microbianos activos. El carácter actual de los depósitos estudiados nos ha permitido observar los estadios iniciales de formación, así como las primeras fases de evolución de este tipo de agregados. En trabajos previos se establece el origen de los NFC asociado a rápida precipitación mineral debida a procesos de evaporación y criodesecación. Las estables condiciones microclimáticas de la cueva, con humedad del aire en saturación, nos permiten concluir que su origen no tiene que estar relacionado con dichos procesos. Asimismo se ha comprobado que los NFC de tipo varillas monocristalinas se generan mediante la calcitización de los filamentos microbianos. Los crecimientos epitaxiales y las cadenas policristalinas, en cambio, responden a fenómenos que pueden ser de carácter orgánico y/o inorgánico por precipitación química en un medio acuoso confinado dentro del biofilm.Moonmilk subaerial speleothems of Altamira Cave are constituted by a network of needle-fiber calcite crystals (NFC) and active microbial filaments. These recent deposits allow us the observation of the first evolution stages, as well as defining microclimatic and hydrochemical conditions of mineral precipitation. In previous works, the origin of the NFC has been determined being associated to fast mineral precipitation related with evaporation and criodesiccation processes. From our data, an evolutionary model has been proposed for this type of deposits. The stable microclimatic conditions of the cave, with air humidity close to saturation, lead us to conclude that their origin doesn't have to be related with these processes. Also it has been proven that the NFC of monocrystallyne rods type is generated by means of calcitization of microbial filaments. On the other hand, epitaxial cements and polycristalline chains are related with organic activity and inorganic processes in a confined aqueous environment developed inside the biofilm.El trabajo ha sido financiado por los proyectos MCYT BTE2002-04492 y EC EVK4-2000-00659. Es una aportación al Proyecto IGCP 448 y a INQUA Comission on Carbon

    Procesos de precipitación mineral bioinducidos en sistemas kársticos subterráneos: breve revisión y nuevas tendencias

    Get PDF
    Los microorganismos, en particular las bacterias, habitan en todos los ambientes posibles de la biosfera incluidos los ambientes subterráneos. Desempeñan un papel importante en procesos geológicos tales como la precipitación y disolución mineral, e influyen notablemente sobre los ciclos biogeoquímicos de diferentes elementos. Hasta este momento, son relativamente pocos los estudios orientados a conocer el papel activo de los microorganismos, especialmente las bacterias, en la formación de espeleotemas, de manera que la implicación de la actividad microbiana en la precipitación y disolución mineral en ambientes kársticos es un tema aún sin resolver en geomicrobiología. Actualmente, no está del todo aclarada cuál es la interrelación entre los microorganismos y las fábricas minerales, ni el papel que juegan los microorganismos en la precipitación de carbonatos. Las cuevas son ambientes protegidos donde las fábricas microbianas pueden preservarse sin sufrir modificaciones diagenéticas importantes o destrucción, ofreciendo, por ello, un excelente entorno para estudiar los procesos de biomineralización (desde los propios microorganismos activos a sus depósitos minerales). Las nuevas tendencias en geomicrobiología se basan en la conjunción de diferentes metodologías (microclima, petrología, geoquímica, hidroquímica, microbiología, biología molecular) con un objetivo común: 1) determinar el papel de las diferentes comunidades microbianas que habitan los ambientes subterráneos en los procesos de transformación mineral; 2) identificar las propiedades físicas y químicas de las fases cristalinas bioinducidas, y 3) determinar las condiciones ambientales y las propiedades composicionales y texturales de los soportes rocosos naturales (biorreceptividad) que favorecen o inhiben el desarrollo de las comunidades microbianas.Microorganisms, particularly bacteria, inhabit all possible environments in the biosphere including subterranean ones. They play an important role in geological processes such as mineral precipitation and dissolution, and significantly influence biogeochemical cycles. At present, relatively few studies have focused on the active role of microorganisms, especially bacteria, in the formation of speleothems. Thus, the involvement of microbial activity in the formation of speleothems in caves is a geomicrobiological issue still to be solved. Today, the relationship between microorganisms and mineral fabrics and the role played by microorganisms in carbonate precipitation is unclear. The processes of carbonate deposit formation in caves offers an excellent scenario for research on biomineralization processes (from active microorganisms to their mineral deposits), because caves are protected environments where microbial fabrics can be preserved without extensive diagenetic modification or destruction. The new tendencies on geomicrobiological studies consist on applying different and multidisciplinary methodological approaches (petrology, geochemistry, microbiology, molecular biology) to (1) determine the role of the different microbial communities inhabiting the hypogean environments in the processes of mineral transformation, (2) identifying the physical and chemical properties of bioinduced crystalline phases, and (3) determine the environmental conditions, composition and texture of natural substrates (bioreceptivity) favouring or inhibiting the development of microbial communities.Este trabajo es parte de los proyectos CGL2006-11561/BTE y CGL2006-07424/BOS

    A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood

    Get PDF
    Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse. © 2021, The Author(s)
    corecore