539 research outputs found
Towards a shared method to classify contaminated territories in the case of an accidental nuclear event: the PRIME project
The analysis of the management of the accidentally radioactive contaminated areas such as those around Chernobyl nuclear power plant highlights the fact that the current spatial classification methods hardly help in recovering proper use of the contaminated territory.
The cause is mainly to be searched for in the traditional construction of risks assessment methods; these methods rest on criteria defined by institutional experts, which are not applicable in practise because they are not shared by all the stakeholders involved in the management of the contaminated territories.
Opposite such top-down tentative management, local efforts supported by Non-Governmental Organizations to restore life in the contaminated area seem to be more fruitful but very time and resources consuming and limited to the specific areas where they are experimented. The aim of the PRIME project, in progress at the French Institute for Radioprotection and Nuclear Safety, is to mix the advantages of both approaches in building a multicriteria decision tool based on the territorial specificities.
The criteria of the method are chosen and weighted with representatives of the territory’s stakeholders (decision makers, local actors and experts) to warrant that all the points of view are taken into account and to enable the risk managers to choose the appropriate strategy in case of an accident involving radioactive substances.
The area chosen for the pilot study is a 50 km radius territory around the nuclear sites of Tricastin-Pierrelatte in the lower valley of Rhône (France). One of the exploration questions of the PRIME project is whether a multicriteria method may be an appropriate tool to treat the data and make them visible and accessible for all the stakeholders
Do we need to fix the anterior fracture component in insufficiency fractures of the pelvis? A biomechanical comparison on an FFP type IIIc fracture in an osteoporotic pelvic bone model.
There is a growing understanding of the specific characteristics of insufficiency fractures of the pelvis and of general requirements for the treatment of affected patients with focus on early mobilization and effective pain reduction as the main goals of therapy. While there is consensus on the significance of achieving stability of the dorsal pelvic ring structures there is still an open discussion about the potential benefits of additional stabilization of an anterior fracture component. Within a biomechanical test setup, two established methods of dorsal fracture fixation were tested under axial loading (25-1200 N; 1000 test cycles) on an explicit osteoporotic bone model (n = 32) with a standardized FFP type IIIc fracture with and without additional fixation of the anterior fracture component. Dorsal fixation was performed with and long and a short 7.3 mm cannulated screw in S1 in one group (n = 16), and a trans sacral bar with an additional short 7.3 mm cannulated screw in S1 in the other group (n = 16). Half of the samples received a 7.3 mm cannulated retrograde transpubic screw for anterior fixation. The fixation with the trans sacral bar and the additional anterior screw fixation showed the highest rate of stability (p = 0.0014), followed by the double SI-screw fixation with stabilization of the anterior fracture (p = 0.0002). During testing, we observed the occurrence of new sacral fractures contralateral to the initial fracture in 22/32 samples. The results let us assume that stabilization of an additional anterior fracture component relevantly improves the stability of the entire ring construct and might prevent failure of the dorsal stabilization or further fracture progression
HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis
Heptahelical protein 1 (HHP1) is a negative regulator in abscisic acid (ABA) and osmotic signalling in Arabidopsis. The physiological role of HHP1 was further investigated in this study using transgenic and knock-out plants. In HHP1::GUS transgenic mutants, GUS activity was found to be mainly expressed in the roots, vasculature, stomata, hydathodes, adhesion zones, and connection sites between septa and seeds, regions in which the regulation of turgor pressure is crucial. By measuring transpiration rate and stomatal closure, it was shown that the guard cells in the hhp1-1 mutant had a decreased sensitivity to drought and ABA stress compared with the WT or the c-hhp1-1 mutant, a complementation mutant of HHP1 expressing the HHP1 gene. The N-terminal fragment (amino acids 1–96) of HHP1 was found to interact with the transcription factor inducer of CBF expression-1 (ICE1) in yeast two-hybrid and bimolecular fluorescence complementation (BiFC) studies. The hhp1-1 mutant grown in soil showed hypersensitivity to cold stress with limited watering. The expression of two ICE1-regulated genes (CBF3 and MYB15) and several other cold stress-responsive genes (RD29A, KIN1, COR15A, and COR47) was less sensitive to cold stress in the hhp1-1 mutant than in the WT. These data suggest that HHP1 may function in the cross-talk between cold and osmotic signalling
Emphysematous cholecystitis in a non-diabetic patient
A 47-year-old male was admitted at our emergency room with a 4-days history of acute abdominal pain, increased by inspiration. There was neither nausea nor vomiting. Physical examination revealed right upper quadrant and right flank tenderness. The patient had no diabetes mellitus. Laboratory tests showed a white-cell count at 15 x 109 cells/L (87% neutrophils), a CRP at 44,1 mg/dL, bilirubin at 1,9 mg/dL and ?GT at 114 U/L
A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants
Transposition of the Anthirrinum majus Tam3 element and the Zea mays Ac element has been monitored in petunia and tobacco plants. Plant vectors were constructed with the transposable elements cloned into the leader sequence of a marker gene. Agrobacterium tumefaciens-mediated leaf disc transformation was used to introduce the transposable element constructs into plant cells. In transgenic plants, excision of the transposable element restores gene expression and results in a clearly distinguishable phenotype. Based on restored expression of the hygromycin phosphotransferase II (HPTII) gene, we established that Tam3 excises in 30% of the transformed petunia plants and in 60% of the transformed tobacco plants. Ac excises from the HPTII gene with comparable frequencies (30%) in both plant species. When the β-glucuronidase (GUS) gene was used to detect transposition of Tam3, a significantly lower excision frequency (13%) was found in both plant species. It could be shown that deletion of parts of the transposable elements Tam3 and Ac, removing either one of the terminal inverted repeats (TIR) or part of the presumptive transposase coding region, abolished the excision from the marker genes. This demonstrates that excision of the transposable element Tam3 in heterologous plant species, as documented for the autonomous element Ac, also depends on both properties. Southern blot hybridization shows the expected excision pattern and the reintegration of Tam3 and Ac elements into the genome of tobacco plants.
Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant
© Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Cisgenesis and intragenesis as new strategies for crop improvement
Cisgenesis and intragenesis are emerging plant breeding technologies which offer great promise for future acceptance of genetically engineered crops. The techniques employ traditional genetic engineering methods but are confined to transferring of genes and genetic elements between sexually compatible species that can breed naturally. One of the main requirements is the absence of selectable marker genes (such as antibiotic resistance genes) in the genome. Hence the sensitive issues with regard to transfer of foreign genes and antibiotic resistance are overcome. It is a targeted technique involving specific locus; therefore, linkage drag that prolongs the time for crop improvement in traditional breeding does not occur. It has great potential for crop improvement using superior alleles that exist in the untapped germplasm or wild species. Cisgenic and intragenic plants may not face the same stringent regulatory assessment for field release as transgenic plants which is a clear added advantage that would save time. In this chapter, the concepts of cis/intragenesis and the prerequisites for the development of cis/intragenesis plants are elaborated. Strategies for marker gene removal after selection of transformants are discussed based on the few recent reports from various plant species
- …