67 research outputs found

    Ab initio study of MF2 (M=Mn, Fe, Co, Ni) rutile-type compounds using the periodic unrestricted Hartree-Fock approach

    Get PDF
    The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed

    CRYSTAL23

    Get PDF

    Combining the Hybrid Functional Method with Dynamical Mean-Field Theory

    Full text link
    We present a new method to compute the electronic structure of correlated materials combining the hybrid functional method with the dynamical mean-field theory. As a test example of the method we study cerium sesquioxide, a strongly correlated Mott-band insulator. The hybrid functional part improves the magnitude of the pd-band gap which is underestimated in the standard approximations to density functional theory while the dynamical mean-field theory part splits the 4f-electron spectra into a lower and an upper Hubbard band.Comment: 5 pages, 2 figures, replaced with revised version, published in Europhys. Let

    Wave-function-based approach to quasiparticle bands: new insight into the electronic structure of c-ZnS

    Full text link
    Ab initio wave-function-based methods are employed for the study of quasiparticle energy bands of zinc-blende ZnS, with focus on the Zn 3d "semicore" states. The relative energies of these states with respect to the top of the S 3p valence bands appear to be poorly described as compared to experimental values not only within the local density approximation (LDA), but also when many-body corrections within the GW approximation are applied to the LDA or LDA+U mean-field solutions [T. Miyake, P. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. B 74, 245213 (2006)]. In the present study, we show that for the accurate description of the Zn 3d states a correlation treatment based on wave function methods is needed. Our study rests on a local Hamiltonian approach which rigorously describes the short-range polarization and charge redistribution effects around an extra hole or electron placed into the valence respective conduction bands of semiconductors and insulators. The method also facilitates the computation of electron correlation effects beyond relaxation and polarization. The electron correlation treatment is performed on finite clusters cut off the infinite system. The formalism makes use of localized Wannier functions and embedding potentials derived explicitly from prior periodic Hartree-Fock calculations. The on-site and nearest-neighbor charge relaxation lead to corrections of several eV to the Hartree-Fock band energies and gap. Corrections due to long-range polarization are of the order of 1.0 eV. The dispersion of the Hartree-Fock bands is only little affected by electron correlations. We find the Zn 3d "semicore" states to lie about 9.0 eV below the top of the S 3p valence bands, in very good agreement with values from valence-band x-ray photoemission.Comment: 44 pages, 8 figures, submitted to Phys. Rev.
    • …
    corecore