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Ab initio Hartree-Fock study of tetragonal and cubic phases of zirconium dioxide
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The structural and electronic properties of cubic and tetragonal zirconia (ZrO, ) are studied using a
periodic ab initio Hartree-Fock method. Only valence electrons are treated explicitly, while effective
core potentials are used for describing core electrons. The equilibrium geometries and elastic properties
of the two phases are studied, and the mechanism of phase transition is discussed, with possible effects of
applied pressure being taken into consideration. The analysis of the electronic structure shows apprecia-
ble departure from a purely ionic type of bond.

I. INTRODUCTION

Zirconia is an important material in ceramic engineer-
ing and recently its significance was proved in catalytic
studies. ' Although the physical properties of zirconia are
a subject of intensive theoretical and experimental study
(the reader is referred to a recent book and to a collec-
tion of papers in a special journal issue devoted to ceram-
ic materials ), many of its features are not as yet clearly
understood. One of them is the stability of different crys-
talline phases of this compound at different temperatures
and pressures. This knowledge of phase stability and
transformations is of great importance for improving the
characteristics of ceramic materials.

It is established that Zr02 has three zero-pressure
modifications. At low temperatures the monoclinic CzI,
(P2, /c) phase (baddeleyite) is stable. Around 1400 K
there is a phase transition to tetragonal D4& (P4z/nmc)
structure. At a temperature of about 2600 K, the tetrag-
onal phase transforms into the cubic fluorite Ot, (Fm 3m)
structure: This cubic structure is a special case of the
tetragonal structure and can be obtained from the latter
by making the ratio of the lattice constants c/a equal to
2' and by shifting pairs of oxygen atoms in the z direc-
tion to their central positions in the unit cell (see Fig. 1).
Various modifications have been found at high pressures,
but there is no general agreement about the high-pressure
phase diagram.

Several papers have been devoted to the theoretical
study of phase transitions in zirconia. In Ref. 8 the
rigid-ion model was used and no stable monoclinic struc-
ture was found. In the more sophisticated potential-
induced-breathing (PIB) model, the monoclinic phase is
not stable in relation to the fluorite structure, and the
tetragonal structure was found to be intrinsically unstable
since it has a negative bulk modulus. In our opinion the
reason for these failures of ionic models of zirconia lies in
their inadequate description of chemical bonding, in

which covalency appears to play an important role.
The natural low-pressure low-temperature monoclinic

phase of Zr02 has four formula units per crystalline cell
and only four symmetry operations in the point group.
Therefore, total-energy ab initio studies of this compound
are still very laborious and costly. But even the more
symmetrical high-temperature tetragonal (2 formula
units, 16 operations} and cubic (1 formula unit, 48 opera-
tors) phases involve important computations, and (to our
knowledge} only one such calculation has been carried
out by Jansen and Gardner' (JG}. They used the full-
potential linear-augmented-plane-wave (FLAPW) method
for studying tetragonal-to-cubic phase transition. This
method allows all-electron calculations of the electronic
structure of solids to be performed by adopting a local-
density-functional (LDF) approximation for exchange
and correlation terms. JG kept lattice parameters for

FIG. 1. Geometry of cubic and tetragonal phases of zirconia:
The two crystal cells are represented by light solid and heavy
dashed lines, respectively. Oxygen and zirconium atoms are
represented as small and large circles, respectively. In the
tetragonal phase, oxygen atoms can move away from the central
positions along the c axis; the displacement is represented by ar-
rows of length cd, . Small crosses mark the four zirconium
atoms at the corners of the rectangle of the density maps of Fig.
5.
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tetragonal zirconia fixed at their experimental value"
0 0

(a =3.64 A, c =5.27A}, but pairs of oxygens were al-
lowed to move along the z axis. The position zo of the
oxygen atoms along the z axis may be described by the
adimensional d, parameter: z0 =(0.25+d, )c. It was
found that the central position of the oxygen atoms
(d, =0) (corresponding to an intermediate structure be-
tween cubic and tetragonal phases, space group
I'4zlmmc) is not stable, while there are two minima on
the total-energy —versus —d, curve at d, =0.052 [the ex-
perimental value for the tetragonal phase is 0.065 (Ref.
6)]. So JG suggested that the cubic structure appears at
high temperatures when oxygen atoms can jump between
the two mimina. Such a model is in agreement with ex-
perimental data for the mean-square atomic displacement
of oxygen atoms as a function of temperature. " This
value, extrapolated up to the transition temperature of
2400 K, is 0.063, which practically coincides with the po-
sition of the two minima. However, the energy barrier
calculated by JG is too low. The estimated transition
temperature is 1200 K, in spite of the fact that no ac-
count was taken of the possibility that lattice parameter
changes might be coordinated with the movement of oxy-
gen atoms. As will be shown later, this coordinated
motion plays an important role in the phase-
transformation mechanism by lowering the energy bar-
rier for oxygen oscillation between the two minima. In-
teresting information was also obtained by JG about the
electronic structure of the tetragonal phase of zirconia.
In particular, electron-charge-density maps were pub-
lished, and the distribution of electrons was analyzed.
The ionization state of oxygen was estimated to be
—1.87. Since it would be —2 for a completely ionic
compound, JG were led to hypothesize a certain amount
of covalent bonding in tetragonal zirconia.

The present work is similar in spirit to the study by JG
in that an ab initio approach is used to investigate the
structural stability and electronic structure of the two
high-temperature phases of zirconia. The method em-
ployed is quite different, however, since a linear combina-
tion of atomic orbitals (LCAO), Hartree-Fock (HF) com-
putational scheme was used. ' ' The localized basis
functions [atomic orbitals (AO's)] are expressed, as usual,
as a linear combination of Gaussian-type orbitals
(GTO's}.' Because of the high number of electrons per
unit cell (112 in tetragonal zirconia), it is convenient to
get rid of core electrons by adopting well-assessed
effective-core-potential (ECP} techniques. ' ' The choice
of ECP and basis set and some computational problems
are discussed in Sec. II. Section III is devoted to the
analysis of the structural stability of the two more sym-
metric phases by considering their HF energy as a func-
tion of the involved geometrical parameters. First of all,
this study enables information about the most stable
configurations and elastic properties of the two phases to
be obtained; second, it enables the model proposed by JG
for the tetragonal-to-cubic transition to be confirmed, but
with different values for the involved parameters; and
third, it enables some preliminary speculations about the
inhuence of applied pressure on phase-transition temper-
atures to be formulated. One may wonder how far the

present results might vary if correlation effects were tak-
en into consideration. Well-assessed DF correlation for-
mulas' ' enable us (in principle, at least) to estimate the
correlation error quite accurately and to calculate the
atomization energy. However, in order to discriminate
between two very similar structures, much higher accura-
cies are required than are possible at present, especially
for systems containing heavy atoms such as zirconium
treated with an ECP approximation. In Sec. IV we dis-
cuss the electronic structure of the calculated equilibrium
configurations of cubic and tetragonal zirconia, with
reference to band structures, total and projected densi-
ties of states (DOS's), Mulliken populations, and
electron-density maps. Previous work in this field is com-
paratively scarce' ' ' We were specially interested in
verifying whether or not one can recognize a partially co-
valent character of bonds in zirconia. The answer is yes,
although these concepts are not well defined for com-
pounds such as zirconia, where there is a very large over-
lap between the AO's of the atoms involved.

II. BASIS SET AND COMPUTATIONAL DATA

Selecting a suitable basis set for a crystalline LCAO
calculation is often a delicate procedure since the region
of functional-parameter space that is accessible (number
and character of basis functions) is severely limited by
computational limitations. ' In the present case, we had
the additional problem of adopting suitable ECP's for ox-
ygen and zirconium. The ECP's proposed by the
Toulouse group' have recently been the object of a de-
tailed investigation into their performance in crystalline
solids. ' This investigation confirmed what was already
known from molecular studies: Equilibrium geometry,
elastic constants, and atomization energy are reproduced
within a few percentage points of the corresponding all-
electron calculations. The Toulouse ECP's have been
adopted for oxygen, but unfortunately they are not avail-
able for zirconium. For this atom we resorted to the pa-
rameters suggested by Hay and Wadt. ' We did this,
though no comparable experience exists about the perfor-
mance of such ECP's in a crystalline environment.

The basis set used for describing valence electrons is
shown in Table I. For both oxygen and zirconium a
split-valence basis set is used in order to provide suScient
variational freedom: In particular, the oxygen ion must
be able to contract in the crystalline field, and the zir-
conium orbitals must be able to act as acceptors of elec-
trons back donated by oxygen ions. The basis set for oxy-
gen is a 4-1G set. That is, it consists of two independent
sets of sp AO's. The first comes from four contracted
GTO's and the second from only one GTO. For the
choice of exponents and orbital coeScients, we took as a
reference the 5G valence set proposed by the Toulouse
group. The most diffuse of their five GTO's was taken
as an independent function, and its exponent was varia-
tionally reoptimized in the case of cubic zirconia, result-
ing in a slightly more diffuse Gaussian (exponent
coefficient 0.212 instead of 0.221 bohr ). A 2-1G set de-
scribes d orbitals of zirconium. Optimization of ex-
ponents and coefncients was performed for the isolated
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TABLE I. Exponents (bohr ) and coefficients of valence-shell Gaussian functions adopted for the
present study. The contraction coefficients multiply individually normalized Gaussions. y [ z] stands

fory X10—+'.

Zirconium

Oxygen

Shell

type

SP

SP

d

d
SP

SP

Exponents

4.0[—1]
1.6[—1]
2.248
7.81[—1]
2.396[—1]
2.371[+1]
6.227
2.108
7.065[—1]
2.12[—1]

Coefficients

1.0
1.0

1.694[—2]
—1.615[—1]

1.129[—1]
6.700[

—1]
1.0

p or d

1.0
1.0
7.189[—2]
4.975[—1]
1.0
2.638[—2]
1.151[—1]
2.990[—1]
4.709[—1]
1.0

Zr + ion (d configuration). Determination of sp AO's
for zirconium was much more delicate because of their
diffuse character. The final choice reproduced in Table I
is a compromise between satisfactory variational perfor-
mance and computational problems. It might be argued
that the choice of the basis set for zirconium is not criti-
cal, especially as far as 5p functions are concerned. These
AO's are unoccupied in the isolated atom, and they are
further destabilized by the crystalline field; so they should
not contribute to the ground-state wave function. How-
ever, as we shall discuss below, the participation of those
AO's in the occupied bands is not negligible, and one
may wonder if the set here employed is adequate. The
1-16 sp valence basis set reported in Table I is certainly
unable to reproduce the corresponding orbitals of the iso-
lated atom, which have much larger tails. For instance,
in the 5s AO of zirconium, as described by Hay and
%adt' with three contracted GTO's, about half of the
electron charge is outside a sphere of a 4-bohr radius,
corresponding approximately to a nearest-neighbor Zr-0
distance, while this fraction is negligible with the present
basis set. Inclusion of very diffuse functions for describ-
ing the outer part of the AO's is impossible in practice,
because it would increase both the cost of the calculation
(the number of integrals to be computed and stored may
become enormous) and the risk of catastrophes due to
pseudohnear dependence. ' On the other hand, in a crys-
talline environment, basis-set deficiencies are largely com-
pensated for by the possibility of exploitation of the basis
functions on neighboring atoms. Consider, for instance,
the case of an isolated Zr + ion in the (5s) configuration
(inner she11s are treated with a standard STQ-6G basis
set). If our 1-1G set is used for valence electrons, the
total-energy and valence Ss levels are 3515.7814 and—0.6938 hartree, respectively. These figures change to
3515.8979 and —0.7396 if we add to our 1-1G set the
Hay-Wadt 3G set, ' which shows the importance of the
latter function in describing the outer part of the
valence-electron distribution. Instead, when we supple-
ment the 1-1G set with "ghost" sp functions centered at
the location of neighboring oxygen atoms in cubic zir-
conia (exponents and coefficients are as for oxygens in
Table I), then the above figures become —3516.0381 and

—0.7001. In a variational sense, these data justify the
use of the basis set here proposed. However, the inter-
pretation of results in chemical terms requires a careful
analysis (see Sec. IV), and in the evaluation of atomiza-
tion energy one must account for an important correction
related to the so-called basis-set-superposition error
(BSSE).

Finally, in Table II, we give some data on the cost of
the present computations. One may note that they in-

clude the case of monoclinic zirconia, which has been the
object of a single test calculation. At the present time, a
systematic structural investigation of this phase, though
feasible in principle, is too expensive.

III. TOTAL ENERGY
AND RELATED PROPERTIES

The structural properties of cubic zirconia may be in-

vestigated by calculating the total energy as a function of
the lattice parameter ao, while for the tetragonal phase
one must consider the three geometrical parameters a, c,
and d, {see Fig. I). Even if the cubic structure is unstable
at zero temperature, it corresponds to a relative
minimum with respect to deformations, which preserve
oxygen atoms in their central position {d, =0 ).

Therefore, a preliminary series of computations was
devoted to the cubic phase, its equilibrium geometry, and
elastic properties. The calculated lattice parameter a&
(5.035 A) agrees with experimental findings [5.086 A
(Ref. 5)] to within 1%. The comparison of calculated
elastic properties with available experimental and
theoretical data is provided in Table III. Fitting
calculated-energy —versus —volume data into the Mur-
naghan equation of state gives a value of bulk modulus
B =222 GPa. In each case, in order to obtain the
elastic constants, seven points of the total-

energy —versus —deformation curve were calculated in the
interval —0.02 to +0.02 of the deformation parameter,
and polynomial fitting was employed. The value of
C» —

C&2 was obtained by performing tetragonal distor-

tions of the cubic unit cell with oxygen atoms fixed at the
central position. Using the equation (C, i+2Czz)/3=8
and the previously obtained bulk modulus, separate
values for C» and C2z were calculated. The C44 elastic
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TABLE II. Computational data for zirconia. All calculations refer to the experimental geometries;
ECP's and the basis set are as described in Sec. II. "Good" tolerances have been employed for the trun-

cation parameters (Ref. 12).

Crystal structure

Structural data
Atoms/cell
AO/cell
Point-group operators

Number of two-electron
integrals ( X10 )

Coulomb
Exchange

Computational times
(IBM 3090/170 s)

Two-electron integrals
One-electron integrals
Self-consistent-field procedure

Cubic

3
34
48

213
175

754
56
23

Tetragonal

6
68
16

653
557

2414
123
240

Monoclinic

12
136

4

1077
1004

7309
501

1250

constant was obtained by rhombohedral deformation of
the unit cell. The results show that the calculated bulk
modulus is in good agreement with the experimental
data, while there is definite disagreement for other elas-
tic constants, especially C&2. The elastic constants of ion-
ic crystals obtained through all-electron and ECP-HF-
LCAO techniques are usually close to the experimental
values when good basis sets are used. The present
disagreement is certainly to be attributed in part to
basis-set inadequacies, in part to uncertainties in the mea-
sured data (obtained on Yz03-stabilized zirconia and ex-
trapolated to the zero-impurity-concentration limit ),
and in part to the instability of the cubic phase at zero
temperature.

As the next step of our study, we tried to optimize the
geometry of the tetragonal phase. Instead of considering
the three structural parameters on the same footing, we

decided to study the dependence of energy on a and e at
two selected planes d, =const. The first value

(d, =+0.065) corresponds to the experimentally mea-

sured shifts of oxygen atoms from their central positions
in tetragonal zirconia; the second one (d, =0) identifies

the plane containing the cubic structure. The two planes
are referred to conventionally in the following as the

TABLE III. Calculated and experimental determinations of
elastic properties of cubic zirconia. All data are in GPa. The
rigid-ion (RI) and potential-induced-breathing (PIB) models are
discussed in the Introduction. Experimental data were obtained

by extrapolation of data measured on Y203-stabilized zirconia
to the zero-impurity-concentration limit.

"tetragonal" and "cubic" planes, respectively. On the
two planes the other two parameters were independently
changed in the range 3.43 (a & 3.68 A and
4.84(c &5.38 A. Sixteen energy points were calculated
at each plane and fitted by a second-degree polynomial.
The coefBcients and corresponding points of minimal en-

ergy of this tetragonal and cubic energy surfaces are list-

ed in Table IV. For both tetragonal and cubic zirconia,
the root-mean-square deviations of calculated from fitted

energy values are less than 2.5X10 hartree, while the
energy interval spanned by calculated values is 10 har-
tree. Inclusion of third-power terms in the fitting polyno-
mial does not improve significantly the quality of fitting.
This is not surprising, since the numerical noise of the
present calculation (associated essentially with tolerances
adopted for the truncation of infinite lattice sums) is of
the same order of magnitude as the average deviation
quoted above; it may be of interest to note that the re-

ported numerical error for the FLAPW calculation is
similar (5 X 10 hartree). From Table IV one can note
that the values of lattice parameters for the cubic plane
obtained by this fitting differ slightly from those previous-

Cubic Tetragonal

TABLE IV. Coefficients of the second-degree polynomial
E(a,c)= Ac +Bca+Ca +Dc+Ea+F, representing the
dependence of total energy (hartree) per Zr02 formula unit on
the lattice parameters (angstroms) for "cubic" and "tetragonal"
phases (see explanation in the text). y [+z] stands for y X 10—*.

The a, c, and E values, corresponding to the minima, are also
shown in the same units.

Present calc.

B

Clz

222
628

19
82

'Reference 8.
Reference 9.

'Reference 26.

RI'

115
222

61
54

PIBb

288
560
153
180

Experiment'

194
417

82
47

A

B
C
D
E
F

c
E

9.97[—2]
1.89[—2]
3.55[—1]—1.07

—2.62
7.37
3.561
5.040

—34.5908

6.11[—2]
3.11[—2]
3.37[—1]—7.48[—1]

—2.55
5.87
3.558
5.258

—34.5981
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FIG. 2. Dependence of energy on d„ the fractional displace-
ment of oxygen atoms (see Fig. 1), for different values of the lat-
tice parameters a and c. In this figure and the following two,

0
a.u. stands for atomic units. "tetragonal" zirconia (a =3.558 A,
c =- 5.258 A) (solid curve), "cubic" zirconia (a =3.561 A,
c =a2' ) (dashed curve), and JG results (Ref. 15) (a =3.64 A,
c =5.27 A) (dotted curve): the energy has been shifted to coin-
cide with the present "cubic" result at d, =0.

ly reported (note, however, that the c/a ratio is 1.415,
that is, very close to the theoretical value 2'~ ). This
discrepancy is due to the different fitting techniques em-
ployed in the two cases. For instance, use of second-
degree fitting in a and c gives a value of 236 GPa for the
bulk modulus of the cubic phase, which is by 6.3% larger
than obtained by the much more accurate one-
dimensional fitting with the Murnaghan equation. Con-
cerning the tetragonal phase, the values obtained for the
structural parameters (a =3.558 A, c =5.258 A) are in
reasonable agreement with experimental data.

For a complete structural investigation of the tetrago-
nal phase, the dependence of energy on the d, parameter
should be analyzed. A complete study of this kind is too
expensive. However, we checked that in the explored
area of a and c parameters the equilibrium positions. of
oxygens lie in interval 0.05& ~d, ~

&0.08. So our repre-
sentation of tetragonal zirconia with oxygen positions
fixed at d, =0.065 is not far from the optimized
geometry. In particular, the experimental finding is
confirmed that the tetragonal phase is more stable than
the cubic one at low temperatures.

The dependence of energy on d, was investigated more
closely for the (a, c) equilibrium values of tetragonal and
cubic zirconia. The corresponding curves are shown in
Fig. 2. For comparison, the results obtained by JG in
their study of the inAuence of the d, parameter are also

0
reproduced (dotted line). For the a =3.558 A and
e =S.258 A values, fitting of calculated points with a
fourth-power polynonmial provides the location of the
energy minima: d, =+0.076. This was considered as the
equilibrium geometry for the tetragonal phase, and elec-
tronic structure data for this geometry are reported in the
next section.

The total-energy curves of Fig. 2 represent a double-
well structure. We shall consider the same model of

tetragonal-to-cubic phase transition as suggested by JG.
The cubic phase appears at high temperature when the
system has the possibility of crossing almost freely the en-
ergetic barrier between the two tetragonal structures. To
obtain the correct value of this barrier, we must compare
totally optimized energies of tetragonal and cubic struc-
tures, because the shift of oxygens to their central posi-
tions leads to considerable changes in lattice constants
(this fact was not taken into account by JG). The calcu-
lated activation barrier is 0.0075 hartree, corresponding
to a phase-transition temperature of 2300 K, in good
agreement with the experimental value.

As well as the temperature, the pressure P can be a
driving force for phase transitions. In order to estimate
the infiuence of pressure on the phase transformation,
one must calculate the free energy (F =E+PV). Com-
parison of free-energy minima at different pressures on
the tetragonal and cubic planes allows us to estimate the
transition temperature as a function of pressure accord-
ing to the model discussed above. %'e have found that up
to 50 GPa the energy barrier remains approximately con-
stant, and the temperature needed to activate the phase
transition lies in interval 2000-3000 K. This means that
the line dividing cubic and tetragonal phase regions on
the Zr02 phase diagram goes almost parallel to the pres-
sure axis up to 50-GPa values. This conclusion is in
agreement with experimental data about the high-
pressure low-temperature part of zirconia phase diagram,
where no evidence was found for cubic-phase presence.
However, these estimates must be taken with caution, be-
cause of the relatively large numerical error that affects
calculated data.

It may be of interest to compare the calculated atomi-
zation energy of zirconia to the experimental data. JG
have estimated the latter to be 0.84 hartree per formula
unit. By subtracting from the energies reported in Table
IV the energies for the atomic species treated in the same
approximation and with the same basis set (

—15.658 and—2. 329 hartree for oxygen and zirconium, respectively),
we obtain an atomization energy of 0.946 and 0.953 har-
tree for the cubic and tetragonal phases, respectively. In-
cidentally, we can observe that the results obtained from
the unique calculation effected for monoclinic zirconia at
the experimental geometry (see Table II) would give an
atomization energy of 0.951. Since no geometrical-
parameter optimization was effected in this case, it is easy
to predict that a slightly higher stability would be found
for monoclinic zirconia with respect to the other phases,
in agreement with the experiment. All calculated stabili-
ties appear too high, even because to these data one must
add the correlation contribution. This excess energy is
clearly attributable to the uncorrect reference atomic en-
ergies, which do not include any correction for the
BSSE. An empirical recipe for obtaining more reliable
reference atomic energies, which has given satisfactory
results in a number of crystalline calculations, is as fol-
lows. The isolated atom calculations are performed with
the same basis set as used in the crystalline calculation,
but substituting the outermost sp shell with two indepen-
dent single-Gaussian sp shells whose exponents are varia-
tionally optimized. In the present case the reference
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atomic energies decrease to —15.660 for oxygen (outer
exponents 0.22 and 0.76 bohrs ) and to —2. 709 for zir-
conium (outer exponents 0.38 and 0.040 bohrs ). As
anticipated in Sec. II, the energy gain is extremely impor-
tant for zirconium and probably overestimated, but is in-
dicative of the importance of BSSE's with poor basis sets.
The corresponding calculated binding energy would de-
crease to 0.578 a.u. for tetragonal zirconia.

As stated in the Introduction, no attempt has been
made to estimate the effect of correlation corrections on
the relative stability and equilibrium geometry of the two
structures. Accurate exploratory work is needed before
extending the use of correlation functionals to such subtle
applications, especially when systems are concerned
where transition-metal atoms are present.

0
V)
C3
C3

~ ~

Zr d

0 p

Zr d

IV. ELECTRONIC STRUCTURE

In this section we describe the electronic structure of
the cubic and tetragonal phase of zirconia calculated at
their theoretical equilibrium con6gurations. Figure 3 re-
ports band structures, and Fig. 4 total and projected den-
sities of states. Reference will also be made in the follow-
ing to the Mulliken population analysis data given in
Table V.

The band structures for the two phases are similar, ex-
hibiting (from lower to higher energies) a narrow valence
band, essentially associated with s orbitals of oxygen, a
wider valence band, primarily from p AO's of oxygen
(small but important contributions from zirconium to
these bands will be discussed in the following), and a con-

-1.0

total
8

-0. 5 0. 0 0. 5
E (a. U. )

FIG. 4. Total and projected DOS's for cubic (top) and tetrag-
onal (bottom) zirconia at their calculated equilibrium
configurations. Contributions from di6'erent types of AO's are
attributed owing to a Mulliken population analysis. Dotted
DOS's are multiplied by a factor 10.

0
LU

p n

duction band, coming from 4d AO's of zirconium. The
valence portion of this structure is typical of ionic oxides.
The analysis of a large number of HF calculations has
shown that the bandwidth of the po band is strongly
correlated to the distance DQ Q between the nearest oxy-

-1.p-

TABLE V. Mulliken population analysis for cubic and
tetragonal zirconia. For tetragonal zirconia, the p-oxygen pop-
ulation is (p, +p„+p, )/3, and the two overlap populations refer
to Zr-0 neighbors in the first coordination sphere at the indicat-
ed distance d.

X N L

Ip n

—l. 0—

FIG. 3. Band structure for cubic (top) and tetragonal (bot-
tom) zirconia at their calculated equilibrium configurations.

Crystal structure

Gross charges
Zirconium

px =py
pz

dx2 y2

dzy dxz

d
Oxygen

S

p
Overlap populations

(Zr-0) [d (A)]
(Zr-0) [d (A)]
(O-O) [d (A)]

Cubic

0.679
—0.088
—0.131
—0.131

0.098

0.098

0.322
0.322
7.661
1.973
1.896

0.005 [2.180]

—0.063 [2.517]

Tetragonal

0.715
—0.125
—0.152
—0.103

0.140

0.367

0.287
0.165
7.642
1.988
1.885

—0.010[2.000]
—0.001 [2.470]
—0.036 [2.629]
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gen atoms and, to a lesser extent, to their number.
Even in the present case, the appreciable difference be-
tween the two bandwidths (7.14 eV for tetragonal and
7.97 eV for cubic zirconia) may be attributed to the
different DQ Q values in the two equilibrium structures
(2.63 and 2.52 A, respectively). On the other hand, these
bandwidths are smaller, by about 1 eV, than those of
purely ionic compounds (such as BeO or bcc MgO), hav-

ing comparable DQ Q values. This fact is indicative of a
less marked ionic character of this compound. The pat-
tern here described is qualitatively similar to that report-
ed by Evarestov, Leko, and Sokolov' and Zandiehnadem
and Murray, who calculated band structures and DOS's
of the cubic, tetragonal, and monoclinic phases, using a
complete-neglect-of-differential-overlap (CNDO) approxi-
rnation and an ab initio LDF-LCAO approach, respec-
tively. In particular, the present valence bands reproduce
almost exactly those of Ref. 20, if the energy scale of the
latter ones is contracted by a factor of 1.5. The difference
is more important in the evaluation of the gap between
valence and conduction bands (optical gap). For the cu-
bic and tetragonal phases, the above-mentioned authors
obtain 3.84 and 4.11 eV, compared with the present
values of 12.3 and 13.3 eV, respectively, and with a
"true" value, which is estimated to be about 6 eV. It is
well known that optical gaps are systematically underes-
timated by LDF and overestimated by HF calculations.
Here the relatively poor description of virtual bands, as a
result of basis-set inadequacies, contributes to increasing
the separation between valence and conduction bands.
The CNDO approximation' exaggerates bandwidths, as
usual, but provides a fairly accurate estimate of the opti-
cal gap.

Now consider the projected DOS's of Fig. 4 and, in
particular, the contribution of Zr AO's to the valence
bands. Since the two schemes are similar, we shall con-
centrate our attention on the case of cubic zirconia. d-
function contributions are more important in the pQ
band, but are not negligible in the sQ band. On the
whole, the Mulliken population of zirconium d AO's is
1.16 (1.25 for tetragonal zirconia). Zirconium p and s
AO's contribute to some extent to valence bands, but as
is evident from the plots, their population is negative.
This result is paradoxical in the frame of standard Mul-
liken analysis (see Table V): To the valence shell of zir-
conium, we should attribute 0.68 electrons, resulting
from 1.16 d electrons minus 0.48 sp electrons. In order to
clarify 'this point, it is useful to consider the zirconium
atom in its crystalline environment by making reference
to ligand-field theory in the strong-field limit (see, for in-
stance, Ref. 29). In the cubic environment of the
nearest-neighbor negative oxygen ions (01, point-group
symmetry), atomic levels of zirconium are shifted up in
energy and partially resolved according to symmetry
properties. They may combine with states of the same

symmetry resulting from s and po. AO's on oxygens
(which generate states of 3 &s, T2g, A ~„,T&„symmetry)
and from p m AO's on the same atoms
(Eg, T,s, T2s, E„,T,„,Tz„). d levels split into a group of
two Eg levels and three T2 levels. The former group
lies significantly lower in energy with respect to the

latter, as a consequence of the more favorable spatial
disposition with respect to the negative centers. This fact
is apparent from the band structure, where the two d-E
conduction bands lie lower in energy with respect to the
three d T2g-conduction bands (in cubic zirconia, there is
even a small gap between the two groups). As far as con-
cerns the ability to form bonds with AO's on oxygen
atoms, both spatial disposition and symmetry favor
d-T2 orbitals. This is why their contribution to valence
bands is more than 3 times that of d-Eg AO's. An analo-
gous situation is maintained in the presence of the tetrag-
onal distortion in spite of some significant changes. Now
consider the problem of negative-valence p and s Zr AO
populations. These AO's (which belong to the A, and
T,„ irreducible representations of the 0& point group, re-
spectively) are much more diffuse than 4d AO's and over-
lap considerably with nearest-neighbor oxygens (see Sec.
II). The presence of the negative cage of oxygens has the
effect of further increasing their spatial extent (a fraction
of electrons migrate outside the cage). This is the coun-
terpart of the well-known effect of anion contraction in
ionic solids. Owing to their spatial disposition, p AO's
are destabilized to a lesser extent than s functions and be-
cause of their symmetry, are more likely to contribute to
bonding crystalline orbitals associated with oxygens. On
the whole, we would expect small but non-negligible con-
tributions of s and, especially, p AO's to the occupied
manifold of crystalline states. The reason why the out-
come of the Mulliken analysis is negative sp Zr popula-
tions is a consequence of the fact that functions centered
on oxygen atoms make an essential contribution to the
description of the tail of valence sp AO s of zirconium, as
discussed in Sec. II. We can formally describe one such
orbital as Z =aA +pB+yC, where A and B are nor-
malized Gaussian functions centered on zirconium, C is a
normalized group orbital centered on oxygens, and a, p,
y are shape coeFicients. In order to describe a valence s
or p AO in the crystalline environment with maximum
density near the oxygen atoms, a and p should be smaller
in absolute value and of opposite sign with respect to y.
When a Mulliken analysis is performed, the C function is
attributed to oxygens. Therefore, the net population on
Zr is resolved with a small (positive) contribution from A

and 8 which is attributed to zirconium, a relatively much
larger (and positive) contribution from C which is attri-
buted to oxygens, and with a sizable (and negative, be-
cause of the sign of the coefficients) "overlap population"
which is equally shared between the two atomic species.
The risks of a mechanical application of standard Mullik-
en analysis is particularly evident when one considers
zirconium-oxygen overlap populations in tetragonal zir-
conia. One would expect the two bonds, in particular the
short one, to be partially covalent: If so, they should be
characterized by positive overlap populations, while the
opposite is found (see Table III).

The above discussion of the Mulliken analysis data
finds a confirmation in the results obtained using a molec-
ular model of tetragonal zirconia, recently proposed by
Sautet. According to this model, zirconium is sur-
rounded by four hydroxyl groups (Zr-OH), represent-
ing the short Zr—0 bonds, and four water molecules
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Zr—OH2), corresponding to the long bonds. This model
is surprisingly effective in predicting the 'lb '

geometry of the first coordination sphere around zirconi-
um and the electronic structure of that atom in the crys-
talline environment and can be used th f '

lere ore in catalytic
studies. When one describes this molecular complex with
the same basis set for zirconium and oxygen as here em-

ployed and adopts the bulk-optimized geometry for oxy-

are similar to those shown in Table V. In particular onen particu ar, one
nds negative s Zr and p Zr populations, near-zero over-

positive one for the short bond. However, when one uses
the Hay-Wadt basis set for zirconium (that is, a reason-
a e description of those AO's, the picture is completely

altered. Both s and p Zr populations become positive

~ ~

(about 0.4 electrons on these AO's) d th d, an e population
is also increased slightly; the total Mulliken charge on

and long bonds become 0.24 and 0.04 electrons, respec-
tive y.

Thishis discussion reveals the limits of the Mulliken
analysis in critical situations when the overla b t

s rom different atoms is very large and when it is not
possible, because of computational problems, to use basis
unction which are attributable properly to a given atom-

ic species. No attempt has been made here to correct this
false result by projecting the density matrix onto a

e imes one in mo ec-minimal basis set of AO's as is sometim d
u ar calculations. However, the present discussion shows
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that a non-negligible positiue population (0.2 —0.4 elec-
tron) should be attributed to sp AO's on zirconium so
that this atom can be assigned a valence charge of about
1.5 electrons. That is, the covalent character of zirconia
seems far more pronounced than is proposed by JG.

Finally, let us briefly discuss the overlap populations
between the nearest oxygen atoms, which are also given
in Table V, with the present basis set. We can consider
them as more meaningful than the ones involving zirconi-
um. The antibonding character of the 0-0 interaction is
revealed by the appreciably negative values on their over-
lap populations, much more markedly so in the case of
cubic zirconia. McCullough and Trueblood ' have attri-
buted the primary reason for the instability of cubic zir-
conia to the uncommonly short distance (2.53 A) between
each oxide ion and its six nearest oxygens (in tetragonal
and monoclinic zirconia, the 0-0 distances within a
given zirconium coordination polyhedron have an aver-
age value of 2.64 and 2.75 A, respectively). The present
results might support their interpretation.

The density maps of Fig. 5 provide further insight into
the electronic structure of the two phases. With respect
to the all-electron maps of JG, the present valence-only
densities reveal the complicated character of the electron-
ic structure in a neighborhood of zirconium nuclei, and
this con6rms the partially covalent character of the Zr—
0 bonds —the difference between short and long Zr—0
bonds in tetragonal zirconia is particularly impressive.
On the other hand, there is almost perfect quantitative
agreement between JG's and our calculated electron den-
sity at the midpoint of the 0—0 bond, where the contri-
bution from core electrons is negligible. These features
are even more evident in the difference maps (valence
minus superposition of isolated 0 ions). The presence
of d Zr electrons appears to be most important along the

short Zr—0 bond in tetragonal zirconia. The contribu-
tion from sp AO's is not apparent because of their diffuse
character. The other important feature that emerges
from these plots is the contraction of anions which causes
an accumulation of electrons near the oxygen nuclei with
respect to isolated ions.

V. PROSPECTIVE WORK

The present work is intended as a preliminary step in a
long-term investigation concerning the surface and cata-
lytic properties of zirconia. A slab model will be used for
simulating different exposed crystal faces. For the rest
the computational techniques to be applied will be the
same as here employed. An essential prerequisite for
such a study to provide reliable data is the correct
description of the corresponding bulk structure. We be-
lieve the results presented here are encouraging, as far as
the structural and electronic properties of cubic and
tetragonal zirconia are concerned. The surface studies to
be undertaken will concern the latter structure, which is
known to be the prevailing one in microcrystalline zir-
conia catalysts. A parallel investigation into bulk mono-
clinic zirconia is envisaged in the near future.
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