155 research outputs found

    Bosonic Colored Group Field Theory

    Full text link
    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the "ultraspin" (large spin) limit. The results are generalized in any dimension. Finally integrating out two colors we write a new representation which could be useful for the constructive analysis of this type of models

    Overview of the parametric representation of renormalizable non-commutative field theory

    Full text link
    We review here the parametric representation of Feynman amplitudes of renormalizable non-commutative quantum field models.Comment: 10 pages, 3 figures, to be published in "Journal of Physics: Conference Series

    Parametric Representation of Rank d Tensorial Group Field Theory: Abelian Models with Kinetic Term ∑s∣ps∣+μ\sum_{s}|p_s| + \mu

    Full text link
    We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank dd Tensorial Group Field Theory. These models are called Abelian because their fields live on U(1)DU(1)^D. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. New dimensional regularization and renormalization schemes are introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models Ï•2n\phi^{2n} over U(1)U(1), and a matrix model over U(1)2U(1)^2. For all divergent amplitudes, we identify a domain of meromorphicity in a strip determined by the real part of the group dimension DD. From this point, the ordinary subtraction program is applied and leads to convergent and analytic renormalized integrals. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank dd Abelian models. We find that these polynomials do not satisfy the ordinary Tutte's rules (contraction/deletion). By scrutinizing the "face"-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction.Comment: 69 pages, 35 figure

    Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity

    Full text link
    In a recent work, a dual formulation of group field theories as non-commutative quantum field theories has been proposed, providing an exact duality between spin foam models and non-commutative simplicial path integrals for constrained BF theories. In light of this new framework, we define a model for 4d gravity which includes the Immirzi parameter gamma. It reproduces the Barrett-Crane amplitudes when gamma goes to infinity, but differs from existing models otherwise; in particular it does not require any rationality condition for gamma. We formulate the amplitudes both as BF simplicial path integrals with explicit non-commutative B variables, and in spin foam form in terms of Wigner 15j-symbols. Finally, we briefly discuss the correlation between neighboring simplices, often argued to be a problematic feature, for example, in the Barrett-Crane model.Comment: 26 pages, 1 figur

    Bounding bubbles: the vertex representation of 3d Group Field Theory and the suppression of pseudo-manifolds

    Full text link
    Based on recent work on simplicial diffeomorphisms in colored group field theories, we develop a representation of the colored Boulatov model, in which the GFT fields depend on variables associated to vertices of the associated simplicial complex, as opposed to edges. On top of simplifying the action of diffeomorphisms, the main advantage of this representation is that the GFT Feynman graphs have a different stranded structure, which allows a direct identification of subgraphs associated to bubbles, and their evaluation is simplified drastically. As a first important application of this formulation, we derive new scaling bounds for the regularized amplitudes, organized in terms of the genera of the bubbles, and show how the pseudo-manifolds configurations appearing in the perturbative expansion are suppressed as compared to manifolds. Moreover, these bounds are proved to be optimal.Comment: 28 pages, 17 figures. Few typos fixed. Minor corrections in figure 6 and theorem

    Renormalized coordinate approach to the thermalization process

    Full text link
    We consider a particle in the harmonic approximation coupled linearly to an environment. modeled by an infinite set of harmonic oscillators. The system (particle--environment) is considered in a cavity at thermal equilibrium. We employ the recently introduced notion of renormalized coordinates to investigate the time evolution of the particle occupation number. For comparison we first present this study in bare coordinates. For a long ellapsed time, in both approaches, the occupation number of the particle becomes independent of its initial value. The value of ocupation number of the particle is the physically expected one at the given temperature. So we have a Markovian process, describing the particle thermalization with the environment. With renormalized coordinates no renormalization procedure is required, leading directly to a finite result.Comment: 16 pages, LATEX, 2 figure

    Commutative limit of a renormalizable noncommutative model

    Full text link
    Renormalizable ϕ4⋆4\phi^{\star 4}_4 models on Moyal space have been obtained by modifying the commutative propagator. But these models have a divergent "naive" commutative limit. We explain here how to obtain a coherent such commutative limit for a recently proposed translation-invariant model. The mechanism relies on the analysis of the uv/ir mixing in general Feynman graphs.Comment: 11 pages, 3 figures, minor misprints being correcte

    The renormalized Ï•44\phi^4_4-trajectory by perturbation theory in the running coupling

    Get PDF
    We compute the renormalized trajectory of Ï•44\phi^4_4-theory by perturbation theory in a running coupling. We introduce an iterative scheme without reference to a bare action. The expansion is proved to be finite to every order of perturbation theory.Comment: 23 pages LaTeX, Large momentum bound correcte

    On the Effective Action of Noncommutative Yang-Mills Theory

    Full text link
    We compute here the Yang-Mills effective action on Moyal space by integrating over the scalar fields in a noncommutative scalar field theory with harmonic term, minimally coupled to an external gauge potential. We also explain the special regularisation scheme chosen here and give some links to the Schwinger parametric representation. Finally, we discuss the results obtained: a noncommutative possibly renormalisable Yang-Mills theory.Comment: 19 pages, 6 figures. At the occasion of the "International Conference on Noncommutative Geometry and Physics", April 2007, Orsay (France). To appear in J. Phys. Conf. Se

    Non-Commutative Complete Mellin Representation for Feynman Amplitudes

    Full text link
    We extend the complete Mellin (CM) representation of Feynman amplitudes to the non-commutative quantum field theories. This representation is a versatile tool. It provides a quick proof of meromorphy of Feynman amplitudes in parameters such as the dimension of space-time. In particular it paves the road for the dimensional renormalization of these theories. This complete Mellin representation also allows the study of asymptotic behavior under rescaling of arbitrary subsets of external invariants of any Feynman amplitude.Comment: 14 pages, no figur
    • …
    corecore