374 research outputs found

    Angle resolved IBIC analysis of 4H-SiC Schottky diodes

    Get PDF
    We present a new experimental procedure based on the ion beam induced charge collection (IBIC) to characterise semiconductor detectors and devices. It consists in measuring the charge collection efficiency (q) as a function of the angle of incidence (eta) of a strongly penetrating MeV ion beam focussed onto a partially depleted semiconductor detector. The unidimensional model based on the drift-diffusion model derived from the Shockley-Ramo-Gunn's theorem gives the theoretical background to fit the eta(alpha) curve and to estimate both the extension of the depletion layer, the dead layer thickness and the minority carrier diffusion length. To illustrate the analytical capability of this technique, a 2 MeV proton beam was focussed at different incident angles onto a 4H-SiC Schottky diode; the experimental results and the theoretical approach are presented and discussed. (c) 2006 Published by Elsevier B.V

    Ion and X-ray micro-beam induced charge collection and their applications in CVD diamond detector characterisation

    Get PDF
    We have used a micrometer size X-ray beam generated from a synchrotron light source at the European Synchrotron Radiation Facility (ESRF) in Grenoble and a 2 MeV proton micro-beam at the Italian National Laboratory (LNL) of Legnaro to image the electronic transport properties of a CVD diamond detector developed within the CERN RD42 collaboration. The focused X-rays or protons are scanned over the device surface, and the induced current or charge pulse is measured and plotted on two dimensional maps. Due to the polycrystalline nature of the material, the maps are not homogeneous and both the techniques show structures ascribable to diamond grains. It was found that the uniformity of the maps depends on the lateral scale (binning) and on the analytical depth of the micro-probes

    Micro-IL and micro-PIXE studies of rich diamond meteorites at Legnaro nuclear microprobe

    Get PDF
    Abstract A combination of micro-ionoluminescence (micro-IL) and micro-PIXE was used to characterize diamond grains inside a type of meteorites known as ureilites. Ureilites are a group of achondrites unique in containing relatively large amounts of carbon occurring as diamond, graphite or lonsdaleite. A shock origin for ureilitic diamonds has been widely accepted though an exact knowledge of the conditions during high-pressure graphite conversion is not yet achieved. Micro-IL is a very powerful technique for material investigation and particularly for diamond analysis. Using this technique we were able to identify the occurrence of the diamond phase inside carbon meteoritic inclusions and to perform micro-PIXE analysis on single diamond grains. In fact, IL in low nitrogen content diamonds is dominated by A-band emission (centered at about 2.9 eV) and so, considering only IL monochromatic map at such a spectral band, it was possible to identify them. By making measurements directly on the meteorites, contamination during chemical extraction processes was avoided and it was possible to study not only the diamond phase, but also its distribution inside carbon inclusions

    A new study of 25^{25}Mg(α\alpha,n)28^{28}Si angular distributions at EαE_\alpha = 3 - 5 MeV

    Full text link
    The observation of 26^{26}Al gives us the proof of active nucleosynthesis in the Milky Way. However the identification of the main producers of 26^{26}Al is still a matter of debate. Many sites have been proposed, but our poor knowledge of the nuclear processes involved introduces high uncertainties. In particular, the limited accuracy on the 25^{25}Mg(α\alpha,n)28^{28}Si reaction cross section has been identified as the main source of nuclear uncertainty in the production of 26^{26}Al in C/Ne explosive burning in massive stars, which has been suggested to be the main source of 26^{26}Al in the Galaxy. We studied this reaction through neutron spectroscopy at the CN Van de Graaff accelerator of the Legnaro National Laboratories. Thanks to this technique we are able to discriminate the (α\alpha,n) events from possible contamination arising from parasitic reactions. In particular, we measured the neutron angular distributions at 5 different beam energies (between 3 and 5 MeV) in the \ang{17.5}-\ang{106} laboratory system angular range. The presented results disagree with the assumptions introduced in the analysis of a previous experiment.Comment: 9 pages, 9 figures - accepted by EPJ

    In-doped Sb nanowires grown by MOCVD for high speed phase change memories

    Get PDF
    We investigated the Phase Change Memory (PCM) capabilities of In-doped Sb nanowires (NWs) with diameters of (20-40) nm, which were self-assembled by Metalorganic Chemical Vapor Deposition (MOCVD) via the vapor-liquid-solid (VLS) mechanism. The PCM behavior of the NWs was proved, and it was shown to have relatively low reset power consumption (~ 400 μW) and fast switching capabilities with respect to standard Ge-Sb-Te based devices. In particular, reversible set and reset switches by voltage pulses as short as 25 ns were demonstrated. The obtained results are useful for understanding the effects of downscaling in PCM devices and for the exploration of innovative PCM architectures and materials

    In-doped Sb nanowires grown by MOCVD for high speed phase change memories

    Get PDF
    We investigated the Phase Change Memory (PCM) capabilities of In-doped Sb nanowires (NWs) with diameters of (20-40) nm, which were self-assembled by Metalorganic Chemical Vapor Deposition (MOCVD) via the vapor-liquid-solid (VLS) mechanism. The PCM behavior of the NWs was proved, and it was shown to have relatively low reset power consumption (~ 400 μW) and fast switching capabilities with respect to standard Ge-Sb-Te based devices. In particular, reversible set and reset switches by voltage pulses as short as 25 ns were demonstrated. The obtained results are useful for understanding the effects of downscaling in PCM devices and for the exploration of innovative PCM architectures and materials. Keywords: Phase change memories, Nanowires, MOCVD, In-Sb, TEM, XR

    Lateral IBIC characterization of single crystal synthetic diamond detectors

    Get PDF
    In order to evaluate the charge collection efficiency (CCE) profile of single-crystal diamond devices based on a p-type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections using a 2 MeV proton microbeam. CCE profiles in the depth direction were extracted from the cross-sectional maps at variable bias voltage. IBIC spectra relevant to the depletion region extending beneath the frontal Schottky electrode show a 100% CCE, with a spectral resolution of about 1.5%. The dependence of the width of the high efficiency region from applied bias voltage allows the constant residual doping concentration of the active region to be evaluated. The region where the electric field is absent shows an exponentially decreasing CCE profile, from which it is possible to estimate the diffusion length of the minority carriers by means of a drift-diffusion model. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    First Direct Measurement of the ^{17}O(p,\gamma)^{18}F Reaction Cross-Section at Gamow Energies for Classical Novae

    Full text link
    Classical novae are important contributors to the abundances of key isotopes, such as the radioactive ^{18}F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The ^{17}O(p,\gamma)^{18}F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range Ecm = 200 - 370 keV appropriate to hydrogen burning in classical novae. In addition, the E=183 keV resonance strength, \omega \gamma=1.67\pm0.12 \mueV, has been measured with the highest precision to date. The uncertainty on the ^{17}O(p,\gamma)^{18}F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.Comment: accepted by Phys. Rev. Let

    Preparation and characterisation of isotopically enriched Ta2_2O5_5 targets for nuclear astrophysics studies

    Full text link
    The direct measurement of reaction cross sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2_2O5_5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17^{17}O and up to 96% in 18^{18}O). Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.Comment: accepted to EPJ

    Heterogeneous subsidence and paleogeographic elements in an extensional setting revealed through the correlation of a storm deposit unit (Aptian, E Spain)

    Get PDF
    Durante el Aptiense, en la Subcuenca de Las Parras (NW Cuenca del Maestrazgo) se depositó una unidad siliciclástica en un contexto tectónico extensional. Esta unidad se ha dividido en cuatro secuencias granocrecientes, de las cuales se analiza en detalle la tercera (S3) ya que presenta un alto potencial de correlación lateral. El análisis sedimentológico de la secuencia S3 ha permitido interpretar una evolución vertical de shoreface inferior con procesos de tormenta, a shoreface superior; también ha permitido correlacionar esta secuencia entre dos sectores de la subcuenca que presentan un desarrollo litológico considerablemente diferente. El techo de la secuencia S3 es una superfi cie erosiva menor con valor cronoestratigráfi co y se ha utilizado como datum de correlación para el análisis de la unidad siliciclástica. Las variaciones laterales de facies de la secuencia S3 permiten interpretar la proximidad de un sistema de descarga siliciclástico hacia el sureste, y se propone una zona de intersección de fallas normales, próxima al sector suroriental de la zona estudiada, como un elemento paleoestructural favorable para la entrada de un sistema de drenaje en la cuenca. En el sector suroriental, por encima del datum de correlación, la secuencia S4 presenta un desarrollo muy reducido debido a la ausencia de su parte inferior; esto ha permitido interpretar la presencia de una discontinuidad local intra-S4. Esta discontinuidad local se correlaciona con otra reconocida en el sector noroccidental. Debido a las diferencias de espesor y al grado de desarrollo de la discontinuidad intra-S4 se deduce que la historia de subsidencia de diferentes bloques de la cuenca no es exactamente la misma. Esta discontinuidad intra-S4 podría tener interés regional ya que separa sedimentos dominantemente siliciclásticos de sedimentos carbonatados y podría indicar una modifi cación importante del sistema sedimentario. Para uno de los bloques estudiados, las variaciones espaciales de espesor para cada secuencia podrían representar un desarrollo de la subsidencia alternando periodos con subsidencia diferencial atenuada y periodos con subsidencia diferencial acentuada, que pueden estar relacionados con la dinámica extensional
    • …
    corecore