5,691 research outputs found
Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies
The recent discovery of hindrance in heavy-ion induced fusion reactions at
extreme sub-barrier energies represents a challenge for theoretical models.
Previously, it has been shown that in medium-heavy systems, the onset of fusion
hindrance depends strongly on the "stiffness" of the nuclei in the entrance
channel. In this work, we explore its dependence on the total mass and the
-value of the fusing systems and find that the fusion hindrance depends in a
systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure
Low Mach Number Modeling of Type Ia Supernovae
We introduce a low Mach number equation set for the large-scale numerical
simulation of carbon-oxygen white dwarfs experiencing a thermonuclear
deflagration. Since most of the interesting physics in a Type Ia supernova
transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a
considerable increase in accuracy and savings in computer time compared with
frequently used compressible codes. Our equation set is derived from the fully
compressible equations using low Mach number asymptotics, but without any
restriction on the size of perturbations in density or temperature. Comparisons
with simulations that use the fully compressible equations validate the low
Mach number model in regimes where both are applicable. Comparisons to
simulations based on the more traditional anelastic approximation also
demonstrate the agreement of these models in the regime for which the anelastic
approximation is valid. For low Mach number flows with potentially finite
amplitude variations in density and temperature, the low Mach number model
overcomes the limitations of each of the more traditional models and can serve
as the basis for an accurate and efficient simulation tool.Comment: Accepted for publication in the Astrophysical Journal 31 pages, 5
figures (some figures degraded in quality to conserve space
Study of vibrational excitation mechanisms of CO2 at high temperatures
Calculating vibrational excitation of CO2 for anharmonic coupling and normal mode at high temperatur
Unerwünschte Arzneimittelwirkungen in der Heroin-gestützten Behandlung (HeGeBe) im Zusammenhang mit verschiedenen Applikationsformen in den Jahren 2001-2002
Study of vibrational excitation mechanisms of carbon dioxide at high temperatures
Vibrational relaxation models of carbon dioxide at high temperature
The B Neutrino Spectrum
Knowledge of the energy spectrum of B neutrinos is an important
ingredient for interpreting experiments that detect energetic neutrinos from
the Sun. The neutrino spectrum deviates from the allowed approximation because
of the broad alpha-unstable Be final state and recoil order corrections to
the beta decay. We have measured the total energy of the alpha particles
emitted following the beta decay of B. The measured spectrum is
inconsistent with some previous measurements, in particular with a recent
experiment of comparable precision. The beta decay strength function for the
transition from B to the accessible excitation energies in Be is fit to
the alpha energy spectrum using the R-matrix approach. Both the positron and
neutrino energy spectra, corrected for recoil order effects, are constructed
from the strength function. The positron spectrum is in good agreement with a
previous direct measurement. The neutrino spectrum disagrees with previous
experiments, particularly for neutrino energies above 12 MeV.Comment: 15 pages, 13 figures, 4 tables, submitted to Phys. Rev. C, typos
correcte
Upper Limit on the molecular resonance strengths in the C+C fusion reaction
Carbon burning is a crucial process for a number of important astrophysical
scenarios. The lowest measured energy is around E=2.1 MeV, only
partially overlapping with the energy range of astrophysical interest. The
currently adopted reaction rates are based on an extrapolation which is highly
uncertain because of potential resonances existing in the unmeasured energy
range and the complication of the effective nuclear potential. By comparing the
cross sections of the three carbon isotope fusion reactions,
C+C, C+C and C+C, we have
established an upper limit on the molecular resonance strengths in
C+C fusion reaction. The preliminary results are presented
and the impact on nuclear astrophysics is discussed.Comment: 4 pages, 3 figures, FUSION11 conference proceedin
- …
