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ABSTRACT

The work presented is an interim report on thecretical studies of COZ
vibrational relaxation, Major emphasis to date has been placed on obtaining
reasonable models for calculating cross sections for the inelastic collision of

a structureless particle with a Co, molecule, The CO2 molecule itself is

= o o I, :

modeled by assurning adiabaticity of the electronic motion, so that the onuly
participating degrees of freedom are the translational modes, and the rotational
and vibrational modes of the CO, molecule. The analyses reported are either
classical or semiclassical in nature, Methods of analysis, such as first order
perturbation theory, specifically applicable only at low thermal velocities are
avoided.

An empirical approach to the problem of specifying the intermolecular
potential is adopted. The intermolecular potential functions chosen have been
simple analytical forms, with parameters which can be varied to investigate

their influence, or, alternately, matched to available experimental data.

The results of calculations for the vibréti‘onal excitation of CC).2 , in an
approximate normal mode model, are reported. In these calculations, the

infermolecular potential is not spherically symmetric, allowing investigation

fos M

of the effects of potential anisotropy and participation of the rotational energy

mode, It is found that the rotational mode can make a contribution to vibra-

R R R R R R

tional excitation over a considerable range of relative translational energies
in the collision. The degree of participation of the rotational mode is a strong

function of the potential anisotropy.

A discussion is given of a Monte Carlo scheme for obtaining thermally-
averaged cross sections for vibrational excitation. The scheme utilizes the
variance reducing technique of importance sampling, together with a property

of averaging integrals, to calculate the integrals for several temperatures

efficiently,

Completely analytical studies of greatly simplified models of the collision :
process also are reported. In particular, an approximate model of potential

anisotropy and rotational effects is given. An analytical form for the vibrational
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energy gained by the vibrational mode during collision is obtained,

Model analyses currently in progress also are outlined, These analyses ¢
include a complete classical treatment for CO,-M collisions, and a semi-
classical treatment which includes the effect of anharmonicity coupling among
the CO, vibrational modes. |
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1. INTRODUCTION

Vibrational relaxation in gases is a nonequilibrium process that has
received extensive theoretical and experimental study in recent years,
Interest has been occasioned by the importance of this process in high tem-
perature gas flows, in many chemical reactions, and, most recently, in
molecular gas lasers. The understanding and prediction of vibrational
relaxation mechanisms in CO, , in particular, is necessary both for anal-
ysis of the gas dynamic phenomena occurring upon entry into planetary
atmospheres and for performance analysis of CO, gas lasers,

The work I;aresant:ed in this report is a theoretical study of CIO2 vibra-
tional relaxation. Major emphasis to date has been placed on obtaining
reasonable models for calculating cross sections for the inelastin collision
of a structur elens particle with a CO, molecule. The CO, molecule
itself is modeled by assuming adiabaticity of the electronic motion, so that
the only degrees of freedom are the translational modes, and the rotational
and vibrational modes of the CO, molecule, The remaining paragraphs of
this introductic outline, in more detajl, some of the considerations entering
into the present study.

Considerable p:rog:r:«assl"9 has been made in the calculation of ¢ross
sections for vibrational energy excitation in nonpolar diatomic molecules,
and in prediction of the overall vibrational relaxation times for such species,
It has been shown, however, that a major problem in these calculations is
the extreme sensitivity of the cross sections to potential details, particularly
at low thermal velocities (Ref 10, pgs. 685-691). In order to predict accurately
the absolute rnagnitude of the cross section for an inelastic event of this type,
the inter- and intramolecular potential functions must be known accurately.
Little is known, however, of the intermolecular potential function for CO, ,
other than what is available from measurements of virial coefficients., Any
choice of a potential‘function must be regarded as postulational. One requires
either detailed molecular scattering experiments or elaborate large-scale

quantum mechanical potential calculations in order to establish, ab initio,

R R R TR

i oy, e i ‘—“M‘ MVM Y_:"WMM



the correct potential, In the absence of such investigations, the present
gtudy adopts an empirical approach to the problem of specifying the inter-
molecular potential, The intermolecular potential functions chosen have
been simple, analytical forms, with parameters which can be varied to
investigate thelir influence, or, alternately, matched to available experi-
mental data,

As general a treatment as possible wae desired, In particular, we
have attempted to modc] those features which distinguish CO, , a linear
triatomic, from the more commonly studied diatomic case, Such features
include a more marked departure from spherical symmetry, the influence
of the vibrational bending modes, and intermode coupling within the molecule,
Several theoretical treatinents of CO, vibrational relaxation are already

11~14

extant, However, each of them possesses at least one of the following

limitations:

1. Restriction to a first order pertu:hation approximation, 11,13,14
2, Neglect of intermarle coupling effects within the CJO2 moleculel.z’ 13, 14
11,12,13

3. Neglect of molecular rotation effects and potential anisotropy.

The models and analysis discussed in this report are directed toward
removal of these restrictions,

The analyses presented in the subsequent sections are classical or
semiclassical in nature, It can be noted that, in recent years, completely
classical models have been used to calculate numerically both vibrational

15 oy , .
415 51d veagtive scattering cross sectionst©r 17

energy transfer cross sections
in simple molecules. The reactive scattering calculations, in particular,
have met with considerable success in interpreting molecular beam reactive
scattering experiments. A completely classical model for CO, collisions

is presented in Section 4 of this report, However, most of the studies con-
tained herein are semiclassical; retention of a quantum-mechanical descrip~
tion of the vibrational modes was felt to be desirable for analyzing vibrational
processes in CO2 . The quantized nature of the vibrational-energy modes

of CO, is emphasized by the techniques and phenomena of ¢xperimental

AN RS il



8,19

studies., One example is afforded by recent experiments]‘ in which a
vibrational fluorescence technique is used to study the collisional deactivation
of the first excited state of the asymmetric stretching vibration (00°1) of

CO, in rare-gas diluents, It appears that this deactivation proceeds by

mea: of intramolecular vibration-to-vibration energy transfer during co,
rare-gas collisions, It is found that these results can be interpreted only if
Fermi resonance and Coriolis mixing of the CO, vibrational states is con-
gsidered, A second example is the analysis of the behavior and performance
of CO, infrared lasers, a0 Application of theory to such processes makes

a quantum mechanical treatment of the vibrational states extremely desirable,

Finally, it should be mentioned that it is desired to apply the theory
developed in this study over a wide range of kinetic temperature, Thus
methods of analysis specifically applicable only at low thermal velocities,

such as first order perturbavion theory, are avoided,

. The remainder of the report is in five sections plus appendices, Sec~
tion 2 presents an analysis of a normal mode model for CO,-M collisions.
The approximations introduced in this analysis make it appropriate for cal-
culation of the rate for direct translation-to-vibration thermal excitation of
CO2 . Molecular rotational effects are included. Section 3 outlines a Monte
Carlo procedure for the averaging of the cross sections obtained in Secfion 2
over a thermal distribution of trajectory parameters, Section 4 gives a more
exact, completely classical analysis of CO,-M collisions. It is planned to

i make some limited numerical calculations on the basis of this analysis to
assess the accuracy of the approximations introduced in the theory of Sec-
tion 2, The work in Sections 2 - 4 depends greatly on machine computation.
In Section 5, completely analytical studies of greatly simplified models of the
vibrational excitation process are discussed, These analytical studies were
undertaken both to provide a guide for the more exact numerical computations

and to gain additional irsight into certain specific aspects of the overall prob-

lem. The 'concluding Section, 6, gives a model for calculating collision-

induced energy transfer processes among the various coupled vibrational ;

modes of the CIO2 molecule,
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2, DECOUPLED, NORMAL-MODE MODEL OF COZ~M COLLISIONS

2,1 COORDINATE SYSTEM

We consider the collision of the CO‘2 molecule with another molecule,
which has been assumed to possess no internal modes, i,e,, to be a struc-
tureless point-mass type particle, Only the nuclear motion of the CO2
molecule is specifically considered., No electronic excitation is treated,

We therefore have what is essentially a four-body problem, For our pur-
poses, the energy of such a system can h2 expressed conveniently as the

sum of the following terms:

1. The kinetic energy of translation of the center of mass of the

entire molecule-particle system,

2. The kinetic energy of the incident particle and the molecule

relative to their center of mass.

3, The kinetic energy of the molecule's atoms relative to the

molecular center of mass,
4. The internal potential energy of the molecule,

5. The potential energy arising from the interaction of the incident

particle with the molecule.

In the standard fashion, the kinetic energy term (1) can be ignored,
using center-of-mass cocrdinates, since there is no potential affecting the
entire system. We therefore consider a system of space-oriented coordi-

nates x, vy, z with origin at the center of mass of the molecule.

The position of the incident particle relative tn the scattering center
can be described in terms of the standard scattering coordinates (R,®, &)

or R , as indicated in Fig. 1. The time variation of R determines term 2

above,

The problem of describing the internal energy of the CO, molecule

(terms 3 and 4) is more complex. In the present section, the normal~mode




approximation of the CO, internal energy is used, (More general consid-
erations are treated in Sections 4 and 6.) For the present purpose, the
coordinate system is shown in Fig, 2. Figure 2 illustrates the relation
between a coordinate system ( X' y "Z ' )fixed in the molecule and the pre-
viously introduced xyz system, As shown in the figure, the 2’ axis is the
molecular axis, i, e., the line of nuclear centers in the equilibrium config-
uration of the linear triatomic molecule.
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The X~ 2’ plane is defined as the plane of the bending motion of the
molecule, «,/B,7 arethe Euler angles according to the convention of
Rose, which give the instantaneous orientation of the primed system with
respect to the unprimed system. In the present case, & and ﬂ are actually
the azimuthal and polar angles defining the location of the equilibrium molecu-
lar axis., 7 specifies the orientation of the CO, bending plane about this
axis, If A is a vector in the unprimed system, it is expressed in the primed

system through the rotation matrix A ,

-/

R’ = AR,

where
[cos d. cosBcosy - sind. sthB] [sind cosB cosy+ cosd sinTl - s;n/ﬁ cosy
A = ~ [cosa cosB siny + sinol cosf1 [-sinol cosB siny + cosdl cosy]  sinB sind
cos o sin /3 sih oL cos/3 cos 3

(2-1)
2.2 SYSTEM HAMILTONIAN

The total Hamiltonian, disregarding the system mass motion, is written
as the sum of the last four contributions listed in Section 2, 1:

They are specified in turn here:

L Incident particle kinetic energy (term 2);

Hy = 0 (RPRE + Bl + sin® @R ),

2
@ 2MR R (2-2)
. R = MR, R = MR;@, /} = MR® sin® )
II. Internal kinetic and potential energy of the CO, molecule (terms 3

and 4):

As mentioned above, a normal mode approximation to the COZ internal

energy states is adopted in this section. The direction of the normal vibrational
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displacements, using the notation of Herzbergzz is given in Fig. 3:

Fig, 3

3
Ink
S. S
Then >

_ 1 . , 1)2 a:a 1 va
HM ”fdnsl‘{'é—daa(sa+Sa/)+5a(3353

{ 2 . =2 e

iy (,‘/3’ + sin g3 P, )

l 2 1 2 1 2
t o3 C’,S, t 5 CeaSa t 7 C3353 ?
. .42
f%:]ﬁ’ F;:Idstnﬂ
(2-3)
Here
m 2 m .2
” [
d‘n’ em, , dea= mc+amo ? d33=m¢+2):1d7
2
) 4(1+ ) 2
Cn = 2 (a‘n * a’la) J C-??- = aas —72——_ ’ c33 s 2(/4-/.1.) (a‘lr"arz)\,

where M =m,/2m, and a,, is the force constant of the C-O bond
(ergs cm-z), a,, is the force constant that gives the interaction of the two

C-O bonds (ergs cm-z), and Q3 (ergs rad-z) is the force constant for the




bending of the molecule, 22
In the above expression for H,, , the terms in the first line are the
kinetic energy associated with vibration; the terms in the second line are
the kinetic energy of molecular (rigid rotator) rotation; and the last line
represents the potential energy (harmonic motion approximation), 5, is the
coordinate for the symmetric stretching mode, 9, and 7 are the coordi-
nates of normal displacement due to bending, It should be recalled that the
third Eulerian angle, 9 , corresponds to a rotation about the %’ (molecular)
axis; the terms in 5, and 9 are the energy for a two-dimensional isotropic
harmonic oscillator, expressed in polar coordinates. 53 is the coordinate

for the asymmetric stretching mode,

The Hamiltonian given by Eq (2-3) omits terms coupling the vibrational
modes, such as created by anharmonicity, Further, terms coupling the
rotational and vibrational motions, created by Coriolis and centrifugal forces,
also are neglected. Finally, small amplitude bending is assumed, and there-
fore the Hamiltonian for a rigid rotator is used, rather than the much mouve

complex general rotational operator,.
III.  Intermolecular Potential Energy (term 5):

We take this potential to be a linear combination of three point-center

interactions

3
Vi = 2 vy

(=1 (2_4)

For the purposes of discussion, it is assumed that /.

» represents the

distance from the incident particle to the {*  nucleus of the Cco, molecule,
However, as will be discussed below, the resulting potential can be para-

metrically varied to account for interactions not centered on the nuclei,

We have chosen, for the Vt

particular, for V, , the potential centered on the carbon nucleus, we choose

, simple exponential interactions. In

a linear combination of attractive and repulsive exponentials

1 1 4 (2-5a)




For \/2 , V, simple exponential repulsive interactions are taken

-d'?.ra "'da’"’

V. = €. e

Vo= CGe 3 3 (2-5b, 5¢)

The distances I

» can be written in terms of the coordinates of Figs. 1

and 2, Further, the cartesian coordinates of the vibrational displacements
can be expressed in terms of the normal displacements of Fig, 3, using the
geometrical relationships of Fig., 2 and the rotation matrix A . The complete
result is somewhat cumbersome, and will not be quoted here. However, if,
following Ta,kaya.na.gif3 we expand the potential Eq (2-4) about the equilibrium
positions of the nuclei, and retain only terms to first order in the ratio of

the vibrational displacements to R , a basic ordering in the potential terms
can be observed. Finally, the result may be further simplified if we neglect
.la//??' compared with 1 , where £ i& the equilibrium C-O separation, This
gives a result corresponding to the first term in an expansion of the potential
about the spherically symmetric case only. The result of this procedure will
be quoted:

V = C e - C. e +R+ZC e_dzﬁcas/w(d.lcos@l)f-ffS
) : . 2 £S5 s (2-6)

where

- R, ] .

£ o=-2Ca,e ° [("F\T) cos h (dy 4 cos @) + cos &' sin (&, L cos @’)]
-d,R - R -, R

£ o= - [C,d’e -Cid,e ° +2C, &, e " ;:’n: cosh (a,l cos @')]

[Cos/s’ cosy sin @ cos (- )~ sin/d‘ cos Y cos @ - s}ng’sin @s[n(at-é)]

- o, R - ¢

703 = --(67(11& T~ C,a, e ‘t‘R) cos &

+2Ca e ¥ Mo [cas@'c sh(a,l @) £ h y
2, 2m, o .4 cos - B Stn (dzlcosg)]

(2-7a,b, c)
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Here, e is the angle between A and the molecular axis:
cos @'« cosfB aos @ - sin & sin O sin(/3 - §) (2-8)

The first two terms in this potential cause purely elastic scattering,
being functions of the translational coordinate only, The third term gives
rise to rotational transitions, while the remaining terms create simultancous
rotational-vibrational transitions, It is seen that rotational excitation can be
treated independently of vibrational excitation, but if one retains the effect of
vibrational structure in the potential, one must also treat rotational inter-

actions to maintain a consistent level of approximation.

The first three terms in this potential are similar to the potential adopted
by ParkerZB to calculate rotational relaxation times for diatomic molecules,
Parker, however, did not require all his potentials to be centered on the nuclei
but allowed the 2, 3 potential centers to be closer to the mass center along the
molecular axis to account for the repulsive interaction of the electron cloud,
This procedure corresponds to letting £ in Eq (2-6) be a variable parameter
which can be less than the equilibrium C-O separation, Raff?? has shown
that the procedure gives rotational excitation cross sections which can be in
good agreement with calculations based on more exactly determined potentials
for simple systems such as H, = He . Thus, although it is acknowledged
that pairwise potentials, such as Eq (2-5), centered on the nuclei, are not
entirely satisfactory, one can approximate the true potential by letting A be

a variable parameter,

The total Hamiltonian is the sum of Eqs (2-2), (2-3), and (2-6):
H=H, +H,+V (2-9)

2,3 METHOD OF SOLUTION OF EQUATIONS OF MOTION - THE DECOUPLING
APPROXIMATION
The approximate Hamiltonian (2-9) developed above leads to equations of
motion for the COZ-M system which are still quite complex, In particular,

the three energy modes: vibration, rotation, and translation, are coupled

through the intermolecular potential function V', We are principally interested

10




in calculating the rate of excitation of the vibrational modes by energy transfex
from the "external modes' of rotation and translation, To facilitate such cal~
culation, an additional approximation is adopted, The last terms in Eq (2-6)
for the potential, Z;: fi S& » are neglected, This implies a neglect of the influ-
ence of molecular vibrations on the translational and rotational motion of the
system, The equations of motion are then merely those governing the collision
of an atom and a (triatomic) rigid rotator, under the influence of the pairwise
exponential intermolecular potentials previously given, * These equations can
be solved numerically on a machine, to obtain the time variation of the tra-
jectory parameters R, @ , § , « ,ﬁ during the course of a COZ~M col-
lision,

Having obtained A(t), @) etc, one can regard the coefficients f; in
the previously neglected potential term Zﬁ 5, as functions of time only, £(t) .
With this approximation, the equations governing the vibrational motion are

Hek
I

separable, and all are of the form

dy S+ Cy5; = £, (t) (2-10)

25

It is a known result™” that use of the solution of Eqs (2-10) gives energy trans-

ferred to the 1? vibrational mode to be:

! 00 Wyt ¢
AEVL, = 5[‘“// ft.’(t’)e‘w" dt/ ) (2-11)

73
where Wy, =(¢; /d;)" is the radial vibrational frequency of the i* mode.

We again emphasize that ﬁ(t) is known as a result of the classical tra-

jectory solutions, since A®), @Ow) .,,.etc. are obtained from the trajectory

* The actual classical trajectory equations as programed are given in
Appendix A,

*% Some manipulation is necessary to achieve this result for the bending mode

coordinates. Putting §,.7 §siny, 5,7 b;bcosx, separation is possible; one i

obtains d,, 8, + €, S50 = Fon(t) deaé;b + Cop Sy = Fyp (%) , where the
forcing functions é’a‘ and f, are suchthat f,, S, +#,S, = f5,.
11




calculations, andfi is an explicit function of these trajectory parameters,

One of the prublems in this formalism is the evaluation of the "pertur-
bation integral, !
J = /“f'ft) e Lt g
A (2-12)
The numerical evaluation of this expression has long been recognized
as a nontrivial task, due to the oscillatory nature of the integrand, ™ This
difficulty is compounded in the present case wherein f;(¢) may itself have an
oscillatory component due to molecular rotation, * In the present study, these
integrals are programed for calculations simultaneously with the trajectory
calculations discussed in the preceding paragraphs. A Runge-Kutta routine

is used,

With the preceding method, the energy transferred to the ZM vibrational
mode of the CO, molecule, AEV; , during a collision with the structureless
particle M , can be calculated. The ALy, so calculated is a function of the
jinitial trajectory parameters, which can be conveniently specified as: the
initial relative COZ~M translational velocity, V,, ; the impact parameter b ;
the initial CO, molecular orientation, a, and /5 » and the initial CO, rota-

sl 3

tional velocity, wy, and &, . Thus, in general,

AE, = AE,, (V, b, Aoy S Waty wp, )

* The problem exists even if the decoupling approximation is not introduced
in the classical equations, The numerical difficulty then arises when accur-
ately integrating certain of the equations of motion, rather than occurring in
the separated integral (2-12),

%% The result has already been averaged over the vibratioral phase, The ability
to do this independently of the trajectory details is a consequence of the decou-
pling approximation, This same approximation also makes the result inde-
pendent of the initial vibrational state of the molecule,

12




2.4 SEMICLASSICAL. CALCULATION OF VIBRATIONAL TRANSITION
PROBABILITIES

The procedure outlined in the preceding sections leads to the calculation
of AE,:, the classical energy gained by the (" €0, mnormal vibrational mode
during a collision, In this normal mode model, AE,; is simply the energy
acquired by a harmoni« illator subject to a time~dependent forcing function
3,27 that
if one chooses to adopt a quantum-mechanical description of the harmonic

(f; (t)) representing the effect of the collision, It has been shown

motion of the CO, vibrational modes, the AEV‘,'sa,re analytically related to

the probabilities for transitions among the quantized vibrational states, Spe-
cifically, Ref 3 shows that if AEy, is the classical energy transferred during
collision to the (* vibrational mode, the probability F’Wf,, for transition between
the m and n® vibritional states of that mode is:

]
o ce. -1 e,
Rt = minle%e™" [f SRR (2-13)

mh J':a (n”J’.’ J’ ,l(m ”J')AI

where

m
1

AE,. / hy,

v th
A frequency of . = mode

X
H

m =lesser of m, n

It should be noted that the adoption of a normal mode model and use of
the potential (V7 ) linearized in the vibrational displacements prevents any
coupling between modes. The model used in this section is directed towards
a calculation of the rate of vibrational excitation via energy transfer from the
translational and rotational modes (see the following section), Section 6 out-
lines a model which specifically treats the problem of COZ-M collisions with

coupled vibrational modes.

A second feature of the transition probability given in Eq (2-13), is that
it is an exact result for a linearly forced harmonic oscillator, In the limit’ |
of small energy transfer, € <<l , it can be shown that Eq (2-13) reduces to
the perturbation result given by a first order time dependent perturbation T

analysis or a distorted wave treatment, For example, in this limit,
PL'

m,maq M€ for € <<
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2,5 RESULTS AND DISCUSSION

Numerica! computations for the vibrational energy A®y. transferrved
to ecach of the three normal modee (t =1, 2, 3) ot the CO‘2 molecule have
been performed, Figures 4-9 show ‘AEv‘.a,s calculated with the decoupled normal
mode model, as a function of various trajectory parameters. The results in
these figures are for coplanar cases, for which @ ="W/2. and we =0 although
the programs also can treat the general three-dimensional case, The AEy,'s
have been numevrically averaged over the initial rotational phase ( a orienta-
tion), Thus the AE\,’? shown in the figures are functions of the three remaining
trajectory parameters: Vo , Wy & b ,

Figures 4-6 show A, plotted versus £y /nY, where Ep-= "ai‘f"N‘,,.a is the
initial relative translational energy and 2, is the symmetric stretching mode
frequency. These curves are for an impact parameter b=0 , Figures 4,

5, and 6 are for the excitation of the symmetric stretching ( v = / ), bending

(¢ =2 ) and asymmetric stretching (L =3 ) modes, respectively, The curves
are plotted for varying initial molecular rotational velocities (W, =8,60x 10“,
4,39 x 1012, 2,01 x 1013, 3,02 x 1013 rad/sec, which respectively correspond
to initial molecular rotational energy E,/\na‘ =5 X g\}:a/h v, = 0.01, 0,26,
5.46, 12,3). Az is to be expected from adiabalicity considerations, for any
given value of £y and Eg , AE,, is greatest for the softest mode. Thus for
given E, and Eq, AE, > AEy,>AEy; . (The molecular parameters used

in preparing these curves are values for CO; Ar collisions, taken by match-
ing the Morse potential of Eq (2-5a) to the Lennard-Jones viscosity parameters
tabulated in Ref 28, The value of £, the anisotropy parameter, is taken equal

to the equilibrium C-O distance,)

The curves also show the effect of molecular rotation. At a given value
of £; , the calculated AE, increases with increasing rotational energy, £ o .
This effect of molecular rotation is greater for the lower translational
energies, £, <E, . As £, exceeds E, , the translational and rotational

modes begin to contribute approximately equally to AE, . These effects of

molecular rotation also have been observed in the exact classical machine
It should be

solution of Benson and Berend, 4 and Kuksenko and Losev, 15
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remarked that the actual extent of rotational effects is a strong function of
the degree of anisotropy in the intermolecular potential function (i.e., the
A parameter in Eq (2-6)).*

Dependence of the calculated AEv's'on impact parameter is shown in
Figs, 7-9, for each of the three modes. The fall-off with b is greater for
the stiffer modes.

We conclude this section with a further discussion of the advantages and

limitations of the present model.

One of the motivations for the present study was the desire to examine
the rate of exzitation of the CO, vibrational energy states behind strong

shock waves. Such a process involves transfer of energy between the rapidly

equilibrated ""external' modes of translation and rotation, on the one hand,
and the vilrational mode on the other, This transfer is called a V-T process.
Therefore, the transition probabilities P,:, » Will be averaged over a thermal
distribution of the trajectory parameters (Y, , b, Wa,» Wg, , X, , ﬂ, ) to
obtain thermally averaged cross sections for the V-T vibrational excitation
process, (A method for performing such a calculation is given in Section 3.)
As discussed in the introduction, any empirically chosen intermolecular
potential function, such as Eq (2-5), can only be treated as a postulate, Exper-
imental correlations will involve parametric investigation of the dependence

of the thermally averaged cross sections on the potential constants.

A principal advantage of the decoupled, normal mode calculations
described in this section is that they lend themselves to parametric studies ;
of the intermolecular potential functions used in obtaining the basic V-T
relaxation rate for CO2 . All experimental evidence points to rapid equili-
bration of energy among the CO.2 normal modes, up to high temperatures,
(It is likely that current theoretical examination of intermode energy .ransfer

(Section 6) will support this rapid equilibration model.) Under such conditions

% Further discussion of the effect of potential anisotropy and molecular rota-
tion is given in connection with analytical studies of Section 5,

17
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of rapid intermode energy distribution, the Cco, V-T relaxation is determined
by the bending mode relaxation rate, The present formulation allows the
bending maode excitation rate to be calculated independently of the other modes.
This simplification will permit extensive examination of the influence of
potential parameters on the predicted, thermally averaged V“Trate, and
comparison of these rates with those experimentally measured. Generally,

such parametric investigations would be difficult, since each predicted rate

is obtained by incorporating many individual trajectory calculations into a
thermal averaging scheme (Section 3). Parametric examination of the result-
ing rates generally would require a much larger amount of machine time if

the influence of all modes had to be incorporated into every trajectory calcula-

tion.,

A second advantage of the prescut model is that it permits straightfor-
ward calculation of the quantum mechanical transition probability, Eq (2-13),
Quantum mechanical calculations for more complex models offer much greater
difficulty (Section 6),

The limitations of this model analysis arise from four basic approxima-
tions:

. Semiclassical Approximation
Normal Mode Apprcximation

Linearized Potential Approximation

W N

Decoupling Approximation

The semiclassical approximation is invoked by treating both the rota-
tional and translational motion of the system classically, The limitations
imposed by this common assumption are discussed in standémr—d references, 10
The approximation is unlikely to create any significant limitation for the

present application.

The use of a normal mode approximation to the true CO, internal
energy states does, of course, involve ignoring an important Co, feature:
the close coupling among states in Fermi resonance. Further, terms coupling
the rotational and vibrational motions, created by Coriolis and centri_ftigal

forces, also are neglected. Finally, the normal mode approximation implies
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small amplitude vibrational bending and stretching, The model given in this
section obviously cannot shed any information on intramoleacular energy
transfer processes, This specific problem is addressed in Section 6 of this
report, The present analysis, however, is directed toward calculation of
the rate for the basic V-T vibrational excitation process, For this purpose,

the normal mode approximation can provide useful information,

The last two approximations can be discussed together, Inaccuracies
arising from use of the linearized potential and from the decoupling approxi-
mation can only be assessed in detail by performing a calculation in which
these approximations are not made., A check of this nature involves numer-
2~ M
system, with consequent loss of the computational advantages of the present

ical solution of the more general classical equations of motion for the CO

model, Section 4 details such a general system of equations, in a form suit-
able for numerical integration, It is planned to perform this more exact
calculation for a few check cases in order to establish definite limits on the

validity of the decoupled calculation.

Pending the detailed comparison of the linearized, decoupled calculation
with the exact clasgical calculation, some qualitative assessments of the
limitations of the simpler model can be made. It is not expected that linear-
ization of the potential in the vibrational displacements will affect the quali-
tative nature of the calculated AEV[ ‘s or Py‘;m ‘s . The sensitivity of the cross
sections to small changes in the intermolecular potential has, however, often
been demonstrated for inelastic processes of this type. It must be assumed,
therefore, that the inclusion of higher order potential terms may have an
effect on the magnitude of the calculated cross sections, particularly at lower

collision energies,

'

Turning to the effect of the decoupling approximation, 4, a.definite
consequence of this approximation can be seen in Figs, 4 and 5. The values
of the rotational energy chosen for these curves bracket the energy range of
interest, The 12,3 h)/‘ run represents an extreme case, It should be noted
that the AE, curve for ( Eger /hy, )nitial = 123 { = 1, shows a AE, greater
than the total available energy in collision at translational energies greater
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than = /0 hy , This violation of energy conservation reflects the fact that
one of the model assumptions fails at extremely high energies. It will be
recalled that the present semiclassical model assumes that the translational~
rotational motion of the colliding molecules is not affected by molecular
vibration, This decoupling approximation is not valid at extremely high
energies, when the period of collisional interaction becomes smaller than

the period of vibrational oscillation, Under such conditions, the vibrational
motion is strongly coupled to the external (translational and rotational) motions
of the molecules. The high energy failure is also evident in the bending mode
(L= 2) curve, 'fo:: ( Egor /hy )Initial = 12,6, It does not appear in the present
runs for the ( L = 3) curves, since the period of the asymmetric stretching mode
is considerably shorter than the other CO, modes, This high energy limita-
tion should not be of importance, however, even in the rather large energy
range ( Oto fev ) of current interest, Note thai the model failure occurs

when the total energy available in collision, E++ Eger approaches 20 hy,

At the temperatures of interest, collisions with so large an available energy

are rare,
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3, MONTE CARLO CALCULATIONS

In the paragraphs below we will discuss the form of the integrals and
the scheme to be used for the Monte Carlo thermal averaging of the V-T
transition probabilities developed in Section 2,

Using the coordinate system shown in Fig, 10, one can select a par~
ticular collision trajectory by specifying the initial position of the incoming
structureless particle in spherical coordinates ( A, , & , &,), the initial
oﬁenﬁa&ion of the C}Oz molecule ( &,, /3, ), the initial rctaﬁonal velocity
W, of the CO, molecule and the initial relative velocity V, between the
molecules, Here the subscript zero has been used to indicate the initial
values for the coordinates,

However, this coordinate system is completely arbitrary in orientation
and is not the most convenient one to use for the quadrature, Consequently,
we now choose a second coordinate system (dependent upon the parameters
of the collision) such that the XY ~plane is coincident with the plane deter-
mined by the line joining the centers of the two molecules (i, e, the direction
specified by ( R,, @, , &, ) above) and by the initial relative velocity V. .
The orientation of this new coordinate system is completely specified if we
choose the %~axis to be parallel, but oppositely directed to Va .

In this new coordinate system the incoming structureless particle appears
as shown in Fig. 11. Now the initial parameters needed to specity the inter-
action are six in number: the magnitude of the incoming relative velocity \/, ,
the impact parameter b for the collision, the orientation (a,, ﬁ, j of the
axis of the Cco, molecule (now referred to the new coordinate system, but
measured in the same fashion as shown in Fig. 10), and the angular velocity
(Wy, » Ws, ) of the co, molecule, (Note that only two components are required
to specify the angular velocity vector since this vector is orthogonal to the

CO, molecular axis. )

One further alteration is needed to simplify the selection of the initial
parameters for each collision trajectory. Rather than specify the initial

angular velocity of the CO, molecule by the parameters Wy, and Wg, , we
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choose the magnitude i of the angular momentum and an angle 7/ defining the
direction of the angular momentum in phase space. Wy, and W, are found
from . and 71' as follows:

ey = F o sin sin
w -f _fg caS?/

The idea of the Monte Carlo calculation is to sclect Y'at random!! the
gix initial parameters mentioned above for each of a large number of colli~
sions, and from the computation of the corresponding trajectories to deduce
the thermally-averaged energy transfer to the vibrational modes of the co,
molecule,

The Monte Carlo calculation of mterest to us starts with int. ‘grals for

the rate Rw,.,,, of transition from the M vibrational level to the n* vibra-
tional level in the (™ mode (where (=1, 2, 3 or 4), This rate depends upon
the number density 7, of atoms, the number density Ng, of GOZ molecules
and temperature / as well as upon the parameters d; and C; (4 =1, 2, 3)
describing the interaction potential, If we denote by P,f,,,,n (€;) the probability
for a transition in the [ mode from state m to state n , then

: <3 o My® by | -
P (T) = 7zﬁncoL4W(§~Tgﬂ7~)é/e“W \/:d»\é, 2T bdb |

(2m)° I,&T/‘s‘”ﬁdﬁ/d“/ 7‘”"/°e

where bx is a cut-off impact parameter

SHTIHETITT

- ,/o'/au

/:> 2 CEZ)

; - € mén
Pl (€) = mIn/e €, 52

(7 Omn :

€L. = AE’V" /ﬁ UJL
£ (~ 7,)” 6,'“‘;

S Fo -4)14 1 (m-4)] and o= min (m,n)

Dividing by the collision rate (the number of collisions per unit volume : A
per unit time) 4 r b?‘ n, n,, (hT/2mwM)” ) we obtain the

probability of a transition from state ™M to state % in the (* mode
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” e 00 .
/d oto/df/,/:aé_/o Lo [——,/o"‘/a Ik 7‘] P (€2

(3.1)

The central problem arising in any Monte Carlo calculation is the
determination of a scheme or algorithm which will require a minimal time
to calculate a reliable result, Such a scheme is termed eificient, The usual
method for increasing the efficiency of a calculation is through the utilization

29,30 The variance is a measure of the

of variance reducing techniques.
accuracy of a particular scheme after a given number of trials, If one scheme
is estimated to have a smaller variance than a second scheme, generally the

former will be more efficient than the latter,

However, in the case of Eq (3. 1) the efficiency of the calrulution can be
examined in a broader sense, The integral in Eq (3.1) depends upon the tem-
perature, and evaluation of this integral is desired for many values of the
temperature within the range 0< T < 15000°K. The integrals over o&, ,

A3, 1 and b do not involve temperature and can be performed by a straight-
forward application of the Monte Carlo technique. Examination of the integrals
over V, and 4 shows that the integrand is a product of two factors, the Boltz- (

mann distribution involving [ and the transition probability for a collision

P, (€) .

A trajectory calculation is required for each evaluation of the latter
quantity, and these calculations are the most time-consuming aspect of the
Monte Carlo computation, The integral, if evaluated by separate calculations
for each of M values of the temperature, would require MN trajectory deter-
minations, where N 1is the uumber of ordinates 'evalﬁated for each tempera-

ture, On the other hand, if the integral for Py,in (T) could be evaluated

or st e e e v

for all M values of temperature for only one set of N trajectory calculations,

a great saving in computational time could be achieved. At the highest end




of the teinperature range, where the Boltzmann distributions are broad and

not sharply peaked, this procedure should be very effective,

Mathematically, the device just described is carried out by utilizing the
variance reducing technique called importance sampling, If the integrand is
denoted by f (&, o 7/, b, V,, f")’ the integral for _P,';m can be

written as

PiAT) /doc/ci/ﬁ/ b/on/d/a ACRY Ry

We multiply and divide f by

2 2y,
?(co>ﬁai?/ b, ”,/o)'z}) (%)W[—E}ys—j%(af_)

so that
Pl (T) /ozoc/cw/azy db/d\//dfo[-?i]

The choice of the functional form of g with respect to V, and fo is
dictated by heuristic considerations. If one were to examine a container
filled with a mixture of CO2

if one labeled all random collisions between one of each type of molecule, the

molecules and inert monatomic meolecules, and

probability for energy transfer in a selection of N collisions would be simu-
lated by an N -term Monte Carlo computation. The initial relative velocity
V, and angular momentum .10 of the CO2 molecule would be chosen '"at ran-
dein' from a Boltzmann distribution for these quantities at the characteristic
temperature ?* of the mixture. Therefore, a Boltzmann-type probability
density function i at a f1ct1c1ous temperature ?* would be an intuitive choice.
Since the probability P (5 ) for energy transfer in any particular col-
lision is small except for the most energetic collisions, the collisions with
large initial values of V, and + will contribute most to the energy transfer
process, Therefore, the ficticious temperature “* is expected to be some-

what higher than the actual temperature T in the integral,

. s
We introduce the convenient scale factors V., = (}i e /M) and

eo




so,, = (I .k )2 together with the new integration variables v = V/V,,
q, = fo/.f;,w and 4 = b/b* . The expression for .P,:m becomes

w v X4 !
1 ’ C{. » d- o * " e
piun [ 4B i [ [irssfle e ()
~ 2y vy Ca ;
Jdr o CE) B o [ F oS rinc) |
For the Monte Carlo estimate of this integral the probability density

function is given by g (d,, ﬂ, , 2/ ) ) y vV 1 ; 2% ). A large number
N of sets of values for a, /50 ) 2/ , & , ~ and 7_ are selected at random

from this density function, Note that each set of values represents initial
conditions for a trajectory and that each set is independent of the particular

value chosen for [ in the integral. Let the '&’th set of values be denoted by
( Ak y k)
O(,f;), /J’od'), QIL ), ﬁ(& , 'v’k and 7(&), and

(%)
(

3 )
P Ty dmen) < (B o [- 3 o g) (- )] P (e®)

W e P.,i," (e ﬁk)) has been evaluated for the 4% set of values. The Monte

(3. 3)

Carlce approximation to P:M (T) is given hy

E]

PLT) = o ) FR(, Ty, m, ) (3.4)
k-

while the variance, an estimate of the magnitude of the error involved in the i

-

integral, is given by

2 L]

- [Prn (M)

N

fw i D [FW T, mn))]
oy

-~
(3.5)

We reitqréte that the single set of N trajectory calculations allows us
to compute P,:m (T) for several values of T . The initial values for each
trajgctory are selected at random from the probability density ? , which is
independent of T , The corresponding values of Pf,m (6(5*)) are computed
for each trajectory, these values also being independent of T . Finally, for ;

[ . L]
any particular T the factors F *)are calculated, using the ,P,,‘nn (6;“),

l
and these factors are summed to give the estimate of Pon (1),
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For a range of temperatures this technique will be quite accurate,
However, for temperatures beyond this range, the techaique will begin to
fail as a result of the lack of accuracy. Such loss will be evidenced by an
increased (- and also by a poorer convergence in P:‘,,m(T) as a function

of the number N of trajectories.

We expect this procedure to yield accurate results over the widest tem-
perature range for a given 2% at the highest temperatures, At the lower tem-
peratures a single value of 7% will allow computation of the integral over a
much smaller range of temperatures. However, in this range the functional
form of an n (6,;) obtained from the Monte Carlo computations at the
higher temperatures will allow an optimal choice of 7% for the temperature

of interest.
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4, FOUR-BODY CLASSICAL DESCRIPTION OF COZ—M COLLISIONS

In this section, a completely classical four-body analysis for COZ-M

collisions is developed, without the decoupling approximation of Section 2,
4,1 HAMILTON'S EQUATIONS

Consider the four-body system of particles A, B, C, D with masses
Z—M
collisions, A =M; B,D, =0; C =C), Let QJ' (j = 1,2, 3) be the Car-
tesian coordinates of A with respect to the center of mass of BCD, Let

@; (j = 4,5, ¢€) be the Cartesian coordinate of B with respect to D. Let
FERY. P

Mg, Mg , M., M,, respectively. (For later specialization to CO

N
—
LAY

1

= 7,8, 9) be the Cartesian coordinates of C with respect to the center
of mass of BD . Finally, let Q, (j =10,11, 12) be the Cartesian coor-

dinates of the center of mass of the ABCD system.

The system Hamiltonian in terms of these coordinates and their con- x

jugate momenta F; is

, .
.1 2 -1 2 -1 2
H = LZf (2 pua) Pt (2pg,) P+ (@p,,,) Py,
"P"- ( (4-1)
'f'(ZM) £+9+2’9 Q1)Qz;“‘)Q7)}
where
Mu(my+m tm,) oM m,
Ham-a = Y, > M T Sy,

o, (Mgt my) " -
Me,ep = g+ M s ™, 7 = Mgt MM, + WM

Note that in this coordinate system the Hamiltonian is diagonal in the e
kinetic energy, and the potential eneryy is only a function of Q, , Q ;

.» Qg , so that the ABCD mass motion may be neglected.
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The equations of motion are, accordingly:

2 -1
QL = /“LH,M-R 8 (4-2, 3, 4)
Qpuy = Map P
i+3 T Pop Tiys (4-5, 6, 7)
' -1
Rive = Mo gsp Fove (4-8, 9, 10)
P = - LA (4-11,12,13
i a Q[, = ) ] )
p .9
L'+3 aQ£+3 (4""14‘, 15, 16)
p. 22 (4-17,18, 19)
bré 0@y,
. = 1,2,3 18 equations in all.

4,2 POTENTIAL FUNCTIONS
The potential function 2} can be written as the sum of two parts, the
intermolecular potential V,N,.ER and the intramolecular potential for the

C‘O2 molecule, V,urra . We discuss each of these in turn,

Intermolecular Potential Function

We take this potential to be a linear combination of four point-center

interactions
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P3
VINTER (rl) = ‘.Z, ft’ (’2) (4-20)
s

r ({=1,23) represents the distance from the incident particle to the ith
nucleus of the C’O;} molecule., ¥, is the distance between the center of

mass of the molecule and the center of mass of the incident particle,

We have tentatively chosen, as in Section 2, for the F‘: , simple

exponential interactions, In particular, for the potentials centered on the

nuclei, repulsive exponentials are used:

f.o=¢coe “° L=12,3 (4-21)
For the potential between the mass centers, an attractive exponential

is used:

o P i

o= - cge (4-22) !

The distances r; can be written in terms of the generalized coordinates

" ={Z [" & %Z”.Eil’:‘f) Qa'+6] } (4-23)

. - m 2.2
([ () @ T 0]
2 {?-1 [ d (mamo) U T e (4-24;
3 ™ g e 24
ry = {Jzﬂ [—' Qﬁ‘ (;ha*mo) Q“"’ M Q"H’] } (4-25)
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e[ 2, 4] - (4-26)

Intramolecular Potential Function

In the classical model discussed in this section, attention is confined
to harmonic vibrational potentials in the CO, molecule. (A model to examine
the effects of anharrnonicity in COZ-M collisions is discussed in Section 6. )
If S, ., S, , S, arethe dimensional displacements in the normal

mode directions for CO, (see Appendix B) we have:

3

‘ 1 2
-\Z;AJT'RH Y -LZ; Cri S0 » (4-27)
where
5, [Q, /~ 24
! / 1+3 (4-28)
S - |G, x & ///5 /
2 / gto 1+3 i+3 (4-29)
SB - QJ"H’ ' anﬂqus/
(4-30)
and
= » > 7
Qg'+n = Qﬂn L+ @,y 4 + @sun K
L = equilibrium C-O separation
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To obtain the derivatives of the potential with respect to the Q;

used in the equations of motion (4~-i1 -~ 4-19), we use the chain rule:

3&, an 1 85, 00y (4-31)
Initial Conditions
We require the specification of nine QJ' 's and nine P1’ 's . To

specify these, we take the initial orientation of the molecule and incident
atom as follows:

P
[\
A
I
) :
—— -
0. R AN
c / / |
N , / |
nB Pr CISL._ f\D / | -
VB —«IL\—-:T / | L"
D
y N b \Q/ |
54el AN | |
S |
o
N \\! 5
% ,
Figure 12 g
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The xyz system is so chosen that its origin is at the center of mass
of the molecule (point P ) and the zy plane is the plane of bending, The
equilibrium molecular axis lies along P-y . B'C'D' are the equilibrium
(non~vibrating) positions of the nuclei in the molecule, B-C-D are the
actual initial positions of the nuclei, after they have been given scine vibra-
tional displacement (arbitrary, except that P~y must be the molecular
axis, P must be the C. M, location, and B'C'D! must remain in the zy

plane),

Incident Atom

B &y, :1 = 1,2, 3, are the generalized coordinates of the inci-

dent atom, whose initial value specification we shall discuss first.

From the figure, we sece

q = R sih © cos & (4-32)
Q, = R sin ® sih & (4-33)
Q3= R cos ® (4-34)

Thus, Q 1.2.3 requires specificationof R, , &, , @o . It can
02y

also be shown that:
F o= Ko m-aVe (cos B cos® sing cos X~ sin @ sinbsin X - cos @ sin Bcosé)
B = Ko - Ve (sih @ cos ® sind cos X + cos @ sind sin X - sin @ sin O coss )

R = Mg mn Ve (-5th ® sth & cos X - cos ® cos S) ,
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. L
where &= sth b/R, , b being the impact parameter. X is the

angle between the Ve - R and the Z - R planes, Thus P 1.2 3
¥ ’

requires the specificationof Vi , X , and b inadditionto R, ,

@o: @a ’

Molecule
Py Q,’ y for j' =4,5....9, describe the molecule, Figure 3

1 ?
shows the vibrational displacements in the normal coordinate directions,

S,, S, , S :

S, + 2.4 is the displacement of the two O atoms relative to each

1

other (2 L is the equilibrium displacement),
S, is the displacement of the C atom L to the figure axis (i, e.,
y axis) relative to the line joining the O atoms.
S; is the displacement of the C atom along the figure axis relative

to the ¢. m, of the O atoms.

We have initially:

@ =0

&1

G, = S +2lk
(4-38,...,~43)
Q, =0

0

0
~
I

@y = S; f

Q
~
H

SZ

Thus, @ 4,5 9 requires the specification of initial values for the

normal displacements S, , S, , &
There remains the specification of the conjugate momenta P4 )
PS « e P9 ., If 14 , ? 5 ?6 are the Cartesia.n coordinates of B, :
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42 1 95 » 4gq arethe Cartesian coordinates of G, and 4,, , 4y ,
4 1, ave the Cartesian coordinates of D, it can be shown that:

Fovs ™ Fop (Fis = Ping)

m,m, m, My .

FZ‘M"»““G,MD 7;’%"‘ 7y Givs ™ e bira L=1.2,3

Thus, the problem of gpecifying F4 ) PS ‘e F’9 becomes a problem of
— . - - - 8 - 5
specifying ?Ma = 7‘4_? + K;Sj +tg K ,4,;, and Eic'w ; i, e,, the vel~

ocities of particles B, C, D in the molecule. If & is the rotational
velocity of the molecule, and ?“3 ) g}éu ) g"éw are the velocities

(due to vibration) of B, C, Dwith respect to the rotating molecular axis,

Fivs ™ §£+3+ W x Ty
. L —-
Five ™ Elput WXL

Tivg = Elegt &

-

X Ty

)

where V3 , f, , F, are the position vectors of B, C, D with respest

to the origin.

If o , € are respectively the polar and azimuthal angular coor-

dinates of W , it can be shown that the initial values of P4 , P

are given by:
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m, m ; am , ,
F:- = —_B 2 {aaso"u.) (5,+2£)+——-—-—-c'—-—- sm(f‘smé’wb’a}
Mg+ My Mg+ MM,
Mg M .
F; L A S,
WlG+Mp
- M. Mm .
P = — 2 sin ¢ cos€ w (5 +2d)
m,(mg+ my) My + M - .
P - MO LA { 2 > sznrszn£w5,~Coso"wsa}
me+ m¢+ mp m'+m6+m°
m.(mg+ m.) :
a = c. 2 2 {53 - Sth0 cosé€ wSz}
ms'f‘mc*m’
m.(m_+m,) . m_. +m ,
P - c 8 2 {52+——-4'--——i- sth 0~ cos€ WS, + —————— ws}
Mg+ M, +m, Mg +M 1M, ©omgemam, 3

Finally, for the initial orientation of Fig. 12,

Ya
¢ 4 w; + w"‘]

w:[wa 7

cos 0~ = a)d/u)

&

vos €

78 if«‘AJ,
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where W, is the initial molecular rotational velocity about the Z axis,
wWs is the initial molecular rotational velocity about the % axis, and
Wy, is the angular velocity (initially about the Y axis) associated with
rotation of the bending plane of the CO, molecule.

R
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5. ANALYTICAL STUDIES

5.1 MCDELING OF THE EFFECT OF POTENTIAL ANISOTROPY AND
MOLECULAR ROTATION

The models for CO,-M molecular collisions developed in this report
have retained the effect of molecular rotation; the intermolecular potential
function is not sp,  rically symmetric, and the CO, molecule is allowed to
rotate during the collision. The equations of motion for such a system are
much more complex than those for the more commonly adopted colinear or
spherically symmetric models, As discussed in the preceding sections,
anything approaching an exact solution of these equations can only be achieved
by numerical integration, It is desirable, however, to have some analytic
means of examining the effect of molecular rotation on the vibraticnal relaxa-
tion process, if only to give the qualitative dependence of the cross sections
on rotational velocity, This section presents an analysis of a greatly simplified

model that provides such a guide to rotational effects.

The analysis is confined to the symmetric stretching mode of linear
molecules, For specivity, we consider the Co, symmetric stretching mode,
using the notation of Section 2, The results will be applicable to any linear

triatoniic or diatomic molecule.

The model analyzed here is a further approximation to the model assump-
tions of the decoupled, normal-mode study of CO,-M collisions given in Sec-
tion 2. In that section, it was shown that if the effect of vibrational motion on
the classical trajectory for the collision was neglected, and if the intermolec-
ular potential was linearized in the vibrational displacements, the classical

energy transferred to the symmetric stretching mode during collision is given

by:

7 00 . ‘ =4
LR d . w
bE. = g [Fwre T dy
= __.1___ / Jla |
2L ) -

where &, is the radial vibrational frequency for the symmetric stretching

mode, and p is the reduced mass for vibration of that mode. The effect of

4]
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the collision is represented in f (t ), the (linear) forcing function for the

symmetric stretching mode. This is given by Eq (2-7a) of Section 2 as;

f =~-2C,a, e %2R [-’é— cos h (o, £ cos @) + cos ® sinh (a,L cos @')]
(5-2)
Following Parker, 23 the hyperbolic functions are expanded in a Fourier

series., The Fourier coefficients are found to be the integral representations

for Bessel functions of imaginary argument :

13

COS h ((xal oS @') = é,o'[an(“al > e anL® (5—3)
sitn h (oczl cos @’) = il‘an”(ael)e(anu)ia’

These are expansions in terms of a potential anisotropy parameter,
o, L =L/L , the ratio of the anisotropy £ to the potential range L . The

coefficients decrease with increasing order, falling off more rapidly with
decreasing d.ej.

Substituting (5-2), (5-3), and (5-4) into (5-1) gives
o

J = -zczaz;‘snv (5-5)

where

J(Wyt +2n ®')
v a

¢ (5-6)

Ay = e %2 [-é# Lt s (Tonss +12M)] (5-7)

To this point, the analysis has been formal and remains general. Equa-
tions (5-5) - (5-7), however, do display explicitly the sensitive dependence of
rotational effects on the anisotropy parameter L/L. It is seen that the effect
of molecular rotation (which enters the expression principally through the

@®'(+) parameter) will be considerable for those cases in which the higher

harmonics in Eq (5-5) have significant amplitudes, i.e., for cases 2/L>1 ,
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To make further analytical progress, mathematically tractable approxi-
mate forms for A, (t) and @'( t) must be obtained. allowiny integration of
S,n. We proceed to enumerate physical approximations which lead to a
tractable model.

We assume:
1. Copianar interactions, with all motion in the atom-molecule plane,

2. No translation-rotation coupling. This leads to the molecule pos-
sessing constant rotational velocity during the collision, and enables
R (t) to be calculated on the basis of a spherically symmetric

interaction.

3. The classical form of the ''"modified wave number" (MWN) approxi-

mation will be introduced,

Some discussion of these approximations is necessary. The first
assumption will hardly change the nature of the phenomena being investigated,
as most features are retained in coplanar interactions, (We also note that
the available classical machine solutions4’ 15 for vibrational excitation of a
rotating diatomic are confined to the coplanar case, and therefore direct
comparison of the present approximate theory and these exact numerical

solutions will be possible, )

The second assumption is supported by the detailed machine calculations
of Cross and ]E‘Ierscl,1b<':mc:1‘131 for rigid rotator-atom collisions. They find that
the deviation in the translational trajectory created by physically reasonable
potential anisotropies is generally small, More importantly, for cases in
which the molecular angular momentum is large compared with the orbital
angular momentum, the effect of changes in rotational energy is small. Since
we are most interested in the effects of large rotational velocities, the approxi-
mation is appropriate. In general, the approximation is poorest for high-
impact-parameter, high-energy collisions. These are also the trajectories
for which the MWN approximation (see below) is poorest, However, large
impact-parameter collisions are the least important for effecting vibrational

transition.
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The MWN approximation enables non-zero impact parameter collisions
to be treated. First developed by Takayanagi for quantum mechanical treat-
ments of vibrational excitation, its classical analog has been used by Nikitin, 32
Detailed comparison by Ta.le:ay:atna.gi33 with calculations made by Salkoff and
Bauer'?"?’ without this approximation show that it is good at least to energies
of a few eV, The nature of this approximation is best shown by discussing

the trajectory equations;

Using the coordinate system of Fig., 10, if we confine the interaction
to the 2y plane, ® = B =7/2, Invoking approximation (2), the collision

trajectory is governed by the equations of motion

_d VIR

- . 2
M(R‘R@)’ o R (5-8)

and

2 - 2 =Vb
R'$ - Ri &, = Vs (5-9)

’

where A, and &, are the values of R and @ at the classical turning point, and
the other notation is the same as that of Section 2. From these equations, the

well-known integral of motion for the time-distance relationship is obtained:

R - 1/2

¢ =/[v,:" (1-6"/R%) - 5= V(R)] dR,
R (5-10) ;
where © = 0 at R =

R, .
The basis of the MWN approximation is to replace the centrifugal term '
b°/R* in (5-10) with its value at the classical turning point, ba//-?a . This
substitution is Just1fled by the fact that the maximum contribution to the per-
turbation integral J in (5-1) comes from the region near the turning point.
Finally, in the same spirit as this apprommatmn, we replace .@ (R, //‘?) Q
by its value at the turning point, Q @o , and replace the (small) (2 /R)Iah
term in Eq (5-7) by (L/R,) I, . |

With these approximations, Eq (3-12) can be integrated for V (R) given

by (2-5a) with Ga= +o,, &, <o, , to yield
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v )

e *%F . [K1 cosh(d'avm t) - Ka] , (5-11)
where

(2MTPZc,+ci)% C

K, s ( -:: +) , Kz = 4;2 (5~12)
M Voo MV,
i 2 e e
= V -

Ve = Vo (1-b%/R]) (5-13)
Using (5-11) and O'= ot~ ¢ = (wy - éo) t +n, where

wg is the rotational velocity of the molecule and R is an arbitrary phase angle,
Eq (5-6) becomes:

S } . eenzh L e Lwnt‘oc_&
" " /o [K, cosh(F- Yy t)-K,]® (5-14)
where 2 . /
a, = [Ro I, +5:(Ian“ 1'1,?,,.,)] )

W, = W, +2n(wn—§'5o)

Eq (5-14) can be integrated by contour integration, yielding

_ aniy
4Ma, e 2T W, 2w
Sp = = . h = cot h[ = (77 - ]
n x V:', (,K,z'- /(: ) cosec A { ot @ cos oL,V,,( &)
2w . w
f — suvh[fﬁ#(ﬁx ¢4? (5-15)
a.,VQ d" o )

where

L P o= cos"(/(a /K,)
Using Eq (5-1), we have for the classical amount of energy transferred to

the vibrational mode, when averaged over the phase 4 :
amw

- 1 2
AE, 4_77#'\/‘!]'](17

e 2 2w ; ;
=Crd4//.z:snlad,?

e,

(5-16)
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Using (5-15), and integrating over phase;" reduces this expression to the sum
of square terms:

4 ct ) ’ .2
'A‘Ev " M V: (K::” /(az) é’[ﬁ; Ian t E(Ianu + Ian-t)J * (5""17)
2
cosec h° (i':n\}:, ){cotc?aos/?[&-:v; (- ¢)}+ A smh[-*?"(Tf ¢)]}

An especially simple case of Eq (5-17) occurs at higher collision energies,
when the influence of the attractive part of the potential is negligible. At the
higher energies, MV®» C, , sothat K, C, //VIV‘3 . Note that G, = 0(107°C,)
so that K,>”> K, at high energies, and ¢ et -" . For this cass, Eq (5-17)

reduces to:
2

4TM° T g 1 i P21k =
AE, = T&? Z[—/%TIE +5(lan+1+Ia"”’>] Wy eosee h (a’\-/“>sm/7 <°L V"")

Vi & ~00
(5-18)

Figures 13 and 14 are plots of An -‘3—-—- vs nondimensionalized trans-
Er
hy
formed for zero impact parameter, b- 0 cases, The vibrational parameters

lational energy, , where E,= /VI V.. . These calculations were per-
are those of the symmetric stretching mode of €O, , (The potential param-
eters are values for CO,-Ar  collisions, taken by matching the Morse
potential of Eq (2-5a) to the Lennard-Jones viscosity parameters tabulated
in Ref 28) In Fig. 13, the repulsive potential centers have been taken to be
at a distance (.£) of half the equilibrium C-O separation in the CO, molecule,
In Fig. 14, £ is equal to the equilibrium C-O separation. The three curves

shown in each figure are for various amounts of molecular rotational energy

Eqr/hy  where E, = Iw

The large difference in magnitude between Fig, 13 and Fig, 14 illustrates

als

* It is a consequence of the decoupling approximation (2), that enables imme-
diate integration over rotational phase. The same feature occurs with
respect to vibrational phase in obtaining Eq (5-1). |
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the sensitivity of the calculated AE, ‘s to the degree of potential anisotropy,

i. e., to the ratio oz,ajw L/L . As mentioned previously, this dependence on
the potential anisotropy is evident in the original expansion, Eqs (5-5) - (5-7),
The approximate analytic formule for AE, , Eq (5-18), however, displays
these features more explicitly.

Examining the sum in Eq (5-18) shows two effects of increasing the
ratio o, L= £/L

i)  The influence of mwolecular rotation is increased, inasmuch
as the higher order terms in Eq (5-18) contribute moure
significantly to the sum, the ratios of the coefficients a, not
decreasing so rapidly with n .,

ii) The actual magnitude of AE, is critically dependent on dg,ﬁ
since the coefficients a., increase rapidly with increasing
«,d,

Correlation of recent calculationsBB’ 36

of rotational relaxation times
(using machine computation of coplanar rigid-rotator collisions) with experi~-
mental data suggests placement of the repulsive centers at approximately half
the equilibrium nuclear separation. An accurate value is, however, quite an
open question., The anisotropy constant must be regarded in the same light

as the other parameters «,, o, , C,, C, in the model potential.

Figures 13 and 14 also illustrate the effect of molecular rotation, For
those values of £, < E; , there is a considerable increase in AE, for the
rotating case, compared to the nonrotating case. For a given £, this
enhancement increases with £; , Above £, = £, the enhancement due to
rotation is not as marked; it appears that the rotational and translational

energies are approximately equal in their contribution to AE, .

Figures 15 and 16 show AE, calculated for zero impact parameter and
for molecular parameters ¢haracteristic of O,-Ar collisions, using Eq (5-18).
(For these curves, the repulsive potentials have been centered on the equilib-
rium nuclear positions.) These curves are qualitatively similar to the exact,

classical coplanar O,-Ar solutions of Kuksenko and Lesovl5 and of Benson
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and Berend. ok These curves also demonstrate the rotational effects discussed
in the preceding paragraph, Figure 15 plots the results in a way similar to
the plots of Kuksenko and Losev; Fig, 16 is similar to the plot given by Benson
and Berend, It is found that our analytic zero-impact parameter case is 0[10']
larger than the machine calculated AE,’s of Ref 15 which were averaged over

impact parameter, Some of this difference is undoubiedly due to the effect of

non-zero impact parameter, but the analytical result, Eq (5-18), definitely
greatly over estimates the magnitude of AE,, particularly for E, 2 E, (sce

discussion below).

The curves in the preceding figures were prepared for b= 0. Taking
b=0 also implies QP = “é"b =0 . For b+0, f; # 0, The physical inter-
pretation of the effect of nonzero ¢ is straightforward: depending on the
sign of f, , relative to Wi , the collision partner's motion can either add or
subtract a component to the effective collision velocity crea’~sd by the rota- 5‘
x tional motion, Figure 17 is a plot of AE, (calculated from Eq (5-18) versus
E impact pr.rameter, b, for the W,=0 case, It appears that a reasonably correct

modeling of the dependence of AE, on impact parameter can be obtained.

Finally, a comparison is possible with the (more exact) AE,'s calculated
using the decoupled normal mode (DNM) classical model of Section 2, Figure
18 shows such a comparison, for CO, symmetric stretch- Ar collisions, It

should first be noted that any decoupling approximation will involve a violation

of energy conservation. This is reflected in Fig, 18, where both sets of
curves exhibit a high energy failure, in the sense that when the available
energy £+ Eg > hy , then AE, > E, + Egq , violating enexgy
conservation. The effect is, however, much more marked in the approximate
analytical calculation; agreement with the DNM model is best for cases where-

in Eg > E; , as might be expected from the decoupling assumptions which

% There is however, one important effect of rotation which the analytical

treatment is unable to model even qualitatively. This is the dependence »
of the classical turmng point location on the ratio of translational to rota- ’
‘tional energies, and is discussed by Benson and Berend, 4 This effect
causes a greater influence of rotation at higher translational energies
than is shown by thp present result,
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led to the analytical result, Eq (5-18), It is this feature which limits the

usefulness of the analytic result to investigation of qualitative features only,

5.2 THERMAL AVERAGING OF COLINEAR V-T TRANSITICN PROBABIL-

ITIES

A further analytic study was undertaken in support of the thermal
averaging calculations treated in Section 3, As discussed in Section 3, the
V-T transition probabilities as given by Eq (2-13) must be averaged over a
thermal distribution of initial trajectory parameters to obtain the dependence
of the V-T excitation cross sections on temperature. Generally, this is to be
accomplished by machine integration (see Section 3)., However, as a guide
to such calculations, this section discusses analytic thermal integration of

the transition probabilities of Eq (2-13), for a simple colinear interaction,

Equation (2-13) gives the quantum mechanical transition probability for
a collisionally induced transition between the states 0 ,n of a harmonic

nscillator to be: i

n! (5-19)

Reference 3 discusses the analytic evaluation of €; for the colinear

collision of an atom A with a molecule B-C, initially in its ground vibrational

state, . Substitution of the analytic result for €; into Eq (5-19) gives:

2wl
_ 1 oy en an 2WL -AVisech® -
where
V' = relative translational velocity of the atom and molecule

% The potential used to obtain this result is based on an expansion of the
intermolecular potential II of Ref 3; this potential, first used by Rapp and

Sharp, 37 is quite similar to an exponentially repulsive interaction between
the A and B8 atoms, :
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s (Mg + MO
YWig+ Mg+ Me
L = exponential range of atom-moleculs potential

H - 2 Y’;:‘a ( Yng )2
T hw MK Mgt me
W = oscillator radial frequency
My M
o = oscillator reduced mass = 2ot
Mg + M
m

system reduced mass =

i

If this transition probability is averaged over a one-dimensional Maxwellian
distribation of translational velocities, there is obtained

o~ A
1= 7 B [ oo o M) B ]
" (5-21)
The integrand of this expression is sharply peaked near the maximum of the
exponential factor, Integration is accomplished by expanding the argument
of the exponential about its minimum value, This minimum value is easily
shown to occur at a value of VsV, given by the solution of the following trans-
cendental equation:

Y 3

mV 2w L
e = w ),

KT 4+nuwl ‘tONh( VC. )

~2AV. scc/)a(% [V + 2wl tan h(eUL)] i

(5-22)
For those cases (corresponding to the lower temperatures) in which -\-/ﬂ' 2 1,
an approximate value of V. = V,, is obtained by taking tan h(auL)~ 1, |
sec h(?:.."_‘}.!:),v o ivi
Ve y Blving
_ 4nuw LKT \'3 5-23
V .
m- T wm
For n=1, this last result is the Schwartz-Slawsky-Herzfeld formula for the
critical velocity, At the higher temperatures, however, Eq (5-23) is inaccu-
rate, and the complete solution of Eq (5-22) must be used., Figures 19 and 20
give a comparison of the approximate (Eq 5-23) and exact solutions of Eq (5-22)
using the molecular parameters of the asymmetric stretching mode and the
bending mode of €0, . (Solution of Eq (5-22) was accomplished using a machine
Newton-Raphson iteration,) It is seen that at the higher'temperatures, the

critical velocity is less than the values given by Eq (5-23), "Softer" vibrational
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modes, characterized by lower frequencies, skow considerable divergence
between Vo and Vi .

Having determined V, , the argument of the exponent in Eq (5~21) is
expanded in powers of V-V, and terms beyond ( V-V, )2 are neglected, Equa-
tion (5-21) can then be integrated analytically, yielding the result:

] " ﬁ:" 2 gnH _f(vc) "’ (anu,)! v 1 ol
BAT) = [ 7 i) Ve ] %;ofan+f~w>!u! )
(5-24)

where f (V) is the argument of the exponent in Eq (5-21),

Equation (5-24) is displayed, again for the asymmetric stretching and
the bending modes of CO, in Figs, 21 and 22, It is seen that even at 15, 000°K,
the probability of multiple jumps is smaller than the single jump probability,
For almost all cases of interest, the sum appearing in Eq (5-24) is very close
to one, terms beyond the ¥#0 term being negligibly small, At sufficiently
high temperatures, however, [%, (T ) will approach asymptotic values, as
the distribution of molecular velocities becomes less sharply peaked, In this
limit, V. goes to a limiting value independent of T, given by the maximum
of the VF,, (V) curves. This effect is observable near 15,000°K in the curves
for the CO, bending mode, Fig, 22, For a stiffer mode, the transition prob-
abilities will asymptote at some higher temperature, In this limil Fo, (T)
becomes proportional to T,

H m wam-f hzn (awl. -Av"‘mh"’(#)dv
B(T)~ 4 22/ .

Numerical comparison of the exact and the approximate integrands shows that
the steepest descent evaluation still remains valid in the high temperature
region, It is found that £, /£Fsp can become less than //h as T—= oo , The
energy transferred in a o= transition is given by AE, P, = hwnbB,, . In

the high temperature limit, therefore, the model of Ref 3 predicts that multiple

quantura jump transitions will become quite important for energy transfer,
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6, INTERMODE COUPLING MODEL

The calculations discussed in the preceding sections utilize a normal-
mode model of the €0, molecule, with no coupling among thz various €O,
modes, It is well known, however, that the observed IR and Raman spectra
of €0, are not entirely consisient with a purely normal-mode theoretical
model of the vibrational energy states, The energies of some kinetically
important <O, states can be predicted only if one considers anharmonicity
coupling between normal-mode states having comparable energies. This
mechanism is the well-known Fermi resorance coupling, and it gives rise
to a '"mixing"” of some of the normal-mode vibrational wave functions., A
general treatment of CO, vibrational excitation should consider transitions
between these mix2d states, This section is concerned with a model which
will enable V-7 transition probabilities to be calculated for transitions among
"mixed! states, The present model treats the collision as a time-dependent
perturbation acting on CO, vibration, The unperturbed €O, vibrational motion

includes intermode coupling due to anharmonicity.

The Hamiltonian for the normal, uncoupled €O, modes can be written:

2 ‘ - 2
= Al 8 L _2 2 /9 2
Moo=z |2 2w an (% m) T 5w

2 2 2
-f-z’-[:a),r, +a)2rz+a)3/”3:] ’ (6-1)

where )} are dimensionless coordinates proportional to the normal displace-

nients, and &, = 27%; are the circular vibrational frequencies,

The first order anharmonicity terms are

- 3 2
X £ , - o 2 (6 -
U,:Z/ﬁl‘m}’;-!- TYRARS /33’7’”5:] ’ (6-2)

The solution of the following equation for CO; :
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(Hy "'U)> l/) = gV , (6-3)

38,39, 22 where wave functions and energy

is treated in standard references
levels are obtained using first order time-independent nerturbation theory
for degenerate levels, The wave functions, Wy » are found, to zeroth order

in the approximation, to be linear combinations of the normal mode wave

functions: p
{o} N @ (o
‘/’7? 2 W?? :% cn,,@ (//.,é, ’ (6-4)

where g is the order of the Fermi resonance degeneracy, and the normal
(o)
mode wave functions Y are given by:

{e)

y = L(,(V}) %30'5) Evzz(r‘z) €

rlly

»

(6-5)
Here, W (I ) are the standard SHO wave functions:

u&(';')=Nv_d e | Hy (1) -

AT
Hy, (1) is the V¥ Hermite polynom:.al of argumem re .

tohy

The remaining part of the wave function, /‘? (f‘z) , is the solution

for the two-dimensional isotropic harmonic oscillator in polar coordinates

(2,4 )

V2 ¥ilz 1 e _y, ~nf A, 2N tig
Rir,) e = [4%!] [(Zwé).’] v / rf e / L,& (r') e *47 R
£
where # = ( Va’j’ )/2 . [_}t (%) is the associated Laguerre polynomial of

argument r‘z

)
The C"& s are found usmg standard time-independent perturbation thecry ,

for degenerate levels, The C 'S are so chosen that the wave functions 31/

"k

are orthonormal,
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The energy levels for the lower COU, states are shown in Fig, 23, The
wave functions corresponding to the lowest nine states are given in the follow-

ing table:

State designation “ Wave function Energy, cm’’
noGovt ) Wn{f%&{o}: ) %iaz .
o (00 0) / 0
/(@ 1 o) | roe’ 47 667
{z © 2°0) 0.648 ¥2Z r, - 0.766 (I-r,*) /1285

23 ( 0°0) 0.766 Y2 r, + 0.648(~r}) ) 386
4 (0 2*0) =72 et /335
f5 0 3'0) 0.743 7= Cry=1r, )& * 7 0.66972 iy e* 7 1932
(6 U110 0669 55@n-r)e 01435/ nr 7 2077
7 (0 3 0 N 2003
& (001 72 v, 2349

The states in F'ermi resonance are linked by braces, It is the spectro-
scopic convention to assign to these mixed levels the term designation of their

larger component,

We now consider the behavior of the above system under the action of a

time-dependent perturbation of the form:

3 3
Vo= Fo(t)+z ,C‘: (t)r, +Z 31:1,(7,‘) i ry Foow e (6-6)
Py

A:,j«:,
As discussed in previous sections, the influence of a collision can be

represented by a potential of this form,

Using standard methods, the solution of the wave equation for the

63

e,




L e E Y LV 2 T -m.q‘o-’—qmn-'n-n~~-nra1.n~cq 0 oy Py

R L LR LT e e R o e

ey

e g g e

'
.oy ..--..nl.g...,,.{...n... -
4

13

1
e L P T L T R TR R T R R R 2 L 2

13
]
H 1 .

¥
GROUND STATE

P IOV T T e —— )
e e e e o

i
i
i
1
i
R4
i
i
i
1
1
1
]
»
1
i
3
1
.
¥
i
*

T o e g o s

wrmenequersrasbRnrrbnmenennmw q-»;---}--n-unu. P L e L LT PN SR 2

(RUPVRINNRS JR—— ~.J’.........J......._.
4
L]
H]
e
o
T

01 1)

Bsscsrquerronwl ssecnsnpusrnssgrrvunerhnnrnrnyrrnnrnsbosnsmionuesnwmn T e .

Amnn—
E]
*
5
*
1
.
*

hmmmernb e s e mw. B T T T T S L L L T T R R T

LEVELS

COMBINATION

© i e g o o e e e e e et g e e o B o o e

1
]
i
1
i
]
¥
4
i
i
i
]
¥
I
¥
b
[}
i
1]
i
!
1
i3
4
'
[}
1
]
1
I
1
-
1

2349

AQ
T[u

L T R

*
¥
¥
1
T

e s s e g

o
b ren s em e P L
[=]
™M

; + 5 !
] ! : {
i §
™M ’ ¢ i "’ i
' 3 : -l
4-.;3--» Hheme e oy u----»-}-nan-;,. B e LA T T P LT -O-prpvvtwn’uqnh.‘mbh‘L-‘.ui- )
3 - \ H : N w
: : g | ! | ‘ : >
§ ! i ¥ + i
i i 1 ig ) H 1 ) 7] Wi .
3 ¥ H ~— ' ' H ! -l ) i
¢ .:..--nw-- uﬂamnnn:--'s«- cnqp-.--.-'\«-m,a.. ~»4-~--.&9~wn,p—\u~.uu-. —--....-—L,.pu-,g‘w----,---}nn-nu-uq w g
t : b & H :
i ] i t
: ; 1 H ! ! H 1 >
! : 1 H t H } ! (Y1) >-
, ' ! H H ) 3 -l ‘:’
; t 4 ' i
i R R T T B Ltk LT P B S T DT TP LTPEES Sy STEEEES BN ) o
i 1 H g
' - T w :

(04%0)
(022
101%0)

—
R R (.—qnhnaauu-’—--n‘vn e )

B N L

¥
]

SR e o LR LA LR AR A T bRl

e

B R R b S
13
¥
+
)
»
»

4
.

3
B T

[}

P - ]
+

13

1

L]

FEPPEN R IR FYFOUR U SpRppENR SRR T g Ny S y--..%-h-uu.'--.--'..

Bt e . am e b e i 3 b o o 1

1?2 LEVELS

o M

2003
1335
667

¥
i
1

o e e et o e 1t Rt e e
1 ]
3 ¥
s ¥
H ! (N0
: ! (20%0)
e e e o e o e e
s 1
' 1
v 1
—

(1220)

K R ST

|

i

1
e T e

1

'

) 1

i 1

1 1

1
wivmnmebemenbode bniibaciaind

'

1

1

)

+

i
nsmie )-..---.-.‘}----..wn

¥

(10°0)

(]

(02°0)
E

[POC

B L T R L b DT T e R

Figure 23

+
g

¥
1
¥
]
¥
i
1
——
+
4

(12%) 2673

(04%)
Ly
an

PRI RN STRUF ST SO FPP

SRR AR LIETITITT

[}

1

1 ¥
P——
1 ¥
1 ¥
—
F———m———

[P EUPRUS RIS TR (RPN PRI

TSR

o

2797
1388
1285

2671

(0420); 2548

B ey R X X e R
+

]
®
3
¥
¥
H
T
r
3
i}
1

L]
1

.}

Mes w i ba [ - -..o-..--.q-u..‘.,-.:.--,“q-.‘,--..-.b.---;--‘u---h-_-_i L e N N ] R R

RESONANCE

AL T EL CE T

.
S —

B Y T L LD LT TS USSP IR R EPIIPIE IR Sy

A
Vi, 1?2 LEVELS IN FERMI

S S
1
]
1]
]
t
¥
-

2761
2585

500
0

§

-

L WO ‘ADHINI

3000 .

2

64




perturbed system:

“ . oY
(00, #) B = it S (6-1)
can be rephrased in a completely equivalent way as a problem in finding the

coefficients bmn (t), where

~ fo} ~LEyt/h
&Dm =Z:: bnm@) sun € ' (6-8)

{0}
¥, are the combination wave functions given by Eq (6-4), The coefficients

by are determined exactly by the solution of the first order equations:

' : i,  t
b = _.:‘:..Z v ~ n4 |
m " TH L VI £>b,, (6-9)
where n=0,1,2, « ‘
3 . |
(] [ 0 {o}" {03
(7?|V|k>'=5f j j j (,Dn ’\/‘(,14)t r, dr‘,drza’rad;/ ,
$0 Trw 0 fe-e (6-10)

Wy = (En - Ek)/ﬁ
Equations (6-9) are the so-called interaction representation, and are
completely equivalent to the wave Eq (6-7), no small perturbation approxima-
tion having as yet been introduced. If the €0, molecule is initially in state
m before collision (=~ ),|bua(t)|" is the probability that it will be in state
n at time t ,

The evaluation of the matrix elements<n l'\/lk > appearing in Eq (6-9)
becomes increasingly cumbersome as higher order terms are retained in
V (Eq (6-6)). The difficulty does not lie in performing the integration over
the oscillator coordinates S,, S, , S;, 7 , however. At least for the lower

COZ states, the wave functions, as given in Table 1, are quite simple, and

these integrals can readily be evaluated in closed form, The source of com-
plexity lies in the evaluation of the time-dependent coefficients, f‘ (t), ?ij( t), f

etc. These coefficients involve derivatives of the intermolecular potential

with respect to the vibrational coordinates. Only first order derivatives
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appear in f; (t ), but second order derivatives occur in 9¢4 (t), etc, The
degree of complexity is strongly dependent on the functional form chosen for
the intermolecular potential. The first order coefficient, f; (£ ), and the
second order coefficients, 8,-:; (1), have been evaluated for the point center,
pairwise additive exponential interaction potential used in the normal mode
calculations of Section 2, *

It is planned to obtain machine solutions of Eq (6-9), including the nine
states listed in Table 1, which contains all C0O; states having a characteristic
temperature % 3500°K. These include the states important in €0, laser
action. Sharp and Rapp40 have programed equations similar to (6-9) and
retained up to ten coupled states, using a Runge-Kutta routine, It, therefore,
appears feasible to make such multistate calculations, although an investiga-
tion is being conducted to determine the most efficient machine computational
procedure, In the remaining paragraphs of this section, some of the specific

features and difficulties of this formulation are discussed,

Table 2 gives the matrix elements <N ,VU{ 7 including only the linear

terms in V . Two significant features can be seen from these matrix elements;

i) It is found that the interaction potential V removes the . -doubling
degeneracy of the V,> 0 states. In Table 2, the.Z>0 states are
primed, the £ < 0 states are doubly primed. It is to be expected
that the collisional interaction will remove the £ degenerauy,
inasmuch as the interaction depends on the direction of rotation
of the bending plane of the CO, molecule. It should be noted that
this feature effectively increases the number of states appearing
in Eqs (6-9).

ii) Examination of Table 2 also shows that several states that are
close energetically have zero coupling matrix elements, in the

linear approximationto V . For example, the laser states,

\}

% Both f; 3 g;, are expressed as explicit functions of the trajectory
parameters, R ,®, §, 0, 8. These parameters are functions of time,
and thus f; § g, are implicit functions of ¢ .
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(0001) and (1000), are not coupled by the linearized potential,
Many important collisionally induced intramolecular V-V couplings
only occur if guadratic terms such as ¢ 5 5/ are included in
the potential, * Therefore, it appears desirable to include the
contribution of second order terms to V in calculating the matrix

elements,

Thus two major computational probiems in obtaining machine solutions
of BEq (6-9) are now apparent, One problem arises from the additional number
of participating states, due to the A ~-splitting discussed in i), The second
problem is created by the need for including quadratic terms in V' , as dis-
cussed in ii), i Both these features increase demand on the amount of machine
computation necessary to obtain a solution, While the number of Runge-Kutta
integration steps, for a given collisional trajectory, would not be greater than
that in the normal mode program used in Section 2, the number of operations
per step would be greatly increased, We are presently studying ways to mini-

mize this problem,

% It should be noted, however, that in a multistate calculation, such as con-
templated here, collisionally induced transitions still occur between states
for which <n|~V'| k>0, Only in first order perturbation theory does
<n|V |k > =0 imply Fa=0. '

*% Both these problems arise because of the general, three-dimensional treat-
ment oi the molecular collision, For coplanar cases, the .£ -splitting
problem disappears, and the calculation of the second order coefficients

9i4 is greatly simplified.

.
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7. SUMMARY

This interim report has presented the formulation and analyses of
models which will allow caleculation of thermally averaged cross sections for
the vibrational excitation wi CO,. The basic process modeled is enexrgy trans-
fer from the translational and rotational modes of the gas into the vibrational
modes of the 002 molecule~-~-what is called, in the report, a V~T process,

The archetype of such a process occurs in the adjustment to thermal equilib=
rium which takes place behind gas-dynamic shocks. Major emphasis to date
has been placed on calculating trajectories and energy transfer for the in-
elastic collision of a structureless (i.e¢., nonvibrating, nonrotating, spherically
symmetric) particle with a CO, molecule. These results, in terms of inelastic
cross sections, are then used with a Monte Carlo scheme to compute thermally
averaged transition probabilities for vibrational excitation.

Previous analyses of inelastic collisions of a CO, molecule with a
second particle have suffered from at least one of the following restrictions.
(1) The calculation oi the inelastic cross section has been restricted to that
of first-order perturbation theory. (2) The nonspherical nature of the potential
has been neglected. (3) The effect of rotation of the CO, molecule on the
energy transfer has heen neglected. (4) The influence of vibrational bending
of the CO, molecule on the energy transfer has been neglected. (5) Inter-
mode coupling during the collision has been ignored. The present studies
have been directed toward including these features of the collision in the

analysis.

Modeling and analysis of the V-T energy transfer process is treated
principally in Sections 1-3. The decoupled-normal-mode (DNM) model pre-
sented in these sections retains such features as a nonspherically symmetric
intermolecular potential, the influence of molecular rotation, and the influence ’
of the vibrational bending modes. The inclusion of these features is desirable
for the specific case of COZ V-T excitation, wherein the role of the bending
modes is expected to be significant.
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As discussed in.Section 1, any e¢ross section calculation for the vibra-
tional excitation of CO, currently must rely on empirically derived potential
data. It is therefore mandatory that a mode:r calculation of thermal V-T
cross sections be sufficiently flexible to allow parametric investigation of the
effects of various potential features, without requiring an impractical amount
of machine computation time, The DNM medel permits computation of the
vibrational transition probabilities in such a sufficiently short time. This
reduction in the computational time is achieved in two ways. First, the de-
coupling approximation reduces the number of initial trajectory parameters
involved; in particular, the need for averaging over the various vibrational
phases and energies is eliminated., Thus the dimensionality of the thermal
cross-section integral (Eq. (3.1)) has been significantly reduced. A second
feature of the DNM model is that V-T excitation of the various CO, modes
can be examined independently. In particular, if the bending mode ¢xcitation
is the basic V-T mechanism, then the V-T excitation of this mode can be cal-
culated separately., A much larger amount of machine time would be required
if the influence of a1l vibrational modes had to be incorporated into every tra-
jectory calculation.

While treating the translational and rotational modes classically, the
decoupling approximation, as used in the DNM model of Section 2, allows the
retention of the quantized nature of the vibrational states. For the normal
mode states of Section 2, quantum mechanical probabilities for collisionally
induced vibrational transitions are obtained quite readily from the classical
energy transfer expression (cf. Eq. (2-13)), When anharmonic coupling among
the CQ, modes is included in the analysis, calculation of the quantum mechan-
ical transition probabilities is more complex (cf. Section 6). In either case,
the decoupled semiclassical approach has the distinct advantage of permitting
a realistic description of the strongly quantized vibrational energy modes,
while using a computationally straightforward classical description of the

rotational and translational motion of the system.

The theory developed in this study is meant to be applied over a wide
range of kinetic temperatures. The DNM model is not restricted to low thermal

velocities, as would be the case with a first-order quantum mechanical per-

turbation treatment.
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The thermal averaging of transition probabilities based on the DNM
model is treated in Section 3. The thermal cross~section integral is é-fold
for the general three-dimensional case, and 4-fold for coplanar cases. The
problem of numerical integration is further complicated by the fact that the
transition probabilities are quite sensitive functions of two of the integration
variables, the initial translational and rotational energies.

Beyond colinear or spherically symmetric cases, the only thermal
averaging of vibrational excitation cross secctions is the recent work of
Kuksenko and L.osev, 15 That paper presents a calculation of a thermally
averaged V-T cross section for the excitation of 02 upon collision with Ar.

The thermal cross-section integral appears to have been evaluated by straight-
forward numerical quadrature techniques; presumably a rather large number
of trajectory calculations was required to obtain the resulis presented. Per-
haps for this reason, variation of intvrmolecular potential parameters is
limited to varying the exponential range param.ter. Potential anisotrepy was

not varied.

For the present purposes, the Monte Carlo thermal averaging tech-
nique of Section 3 was developed. For multidimensional integrals, the
Monte Carlo method offers the possibility of reducing the number of trajectory
calculations reguired cver more conventional numerical gquadrature techniques. |
The number of points required for a given quadrature accuracy does not in- i
crease geometrically with the dimensionality of the integral. However, for

vibrational excitation cross sections; whirein only collisions occurring in a
rather narrow range of initial translational and rotational energies contribute R
to the integrand, some effective variance reduecing technique is necessary.

The variance reducing method discussed in Section 3 promises to be quite
effective for the COZ vibrational excitation cross sections, giving an accurate
value of the thermal integral using a computationally feasible number of tra-
jectories. The most important feature of the present technique is that it
‘appears possible to evaluate the thermal integral over a considerable tempera-
ture range for only one set of trajectory calculations. It is this feature which
makes parametric invegtigation of the potential parameters, an essential

aspect of the analysis, appear feasible.
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probability expressions, which give qualitatively correct dependence on tra-

While the Monte Carlo method of Section 3 has been developed for the
present vibrational excitation calculations, wider applications appear promis-
ing. Calculation of thermal transport coefficients and high-activation-energy

reactive scattering cross sections are two such possibilities.

Tue four-body, exact classical analysis reported in Section 4 has been
developed primarily to investigate the range of validity of the decoupled normal
mode model of Section 2. The four-body analysis, however, will provide a
flexible tool for investigation of the classical trajectories involving linear
triatomics. In particular, study of dissociative scattering with this program

will be possible.

The studies reported in Section 5 utilize greatly simplified collision
models to obtain analytic expressions for the vibrational transition probabil-
ities. These analyses have served as a guice in developing the thermal aver-

aging calculations of Section 3. They provide easily-evaluated transition

jectory parameters.

An anharmonic CO, model is described in Section 6, although calcu~
lations with this model have not been performed as yet. Transition probabil-
ities to be obtained from such calculations should be of considerable interest
for understanding of CC)2 gas laser processes. For example, deactivation
of the lower laser level (100°) to the (02°0) state by collision is an important
intramolecular V-V process.2 These are two states mixed by Fermi resonance
coupling, with a resonance defect of only 102 c:m"1 . It is therefore expected
that the probability for this collisionally induced transition will be quite large.
The only previous theoretical prediction of this probability is the distorted x
wave calculation of Herzfeld, 11 who predicts a value of 3.5 x 10-3 for the |
transition probability at room temperature for C}O.2 - CO2 collisions. Com-

parison with results obtained using the multistate calculation of Section 6 will

add to understanding of these processes.




APPENDIX A
RIGID ROTATOR-ATOM EQUATIONS OF MOTION

The classical equations of motion for the collision of a rigid triatomic
rotator model of CO, with an atom were programmed for numerical inte-
gration using a Runge-Kutta scheme. The equations, as programmed in

dimensionless form, using the notation of Figs, 1-2, are:

da. _ _Fu (A-1) {
adT sin®A3 ;
4B | s
1T P (A-2)
dR A3
ar T 2 ?1
OL@ - IS@ - ‘
dT =~ R? (A4
« . P A-5
al RZsin®® ( )
dB _ _ 3V ]
IT 7o (A-6) |

A A2 A
d;PA = ’Pa Ciﬁﬁ _ av (A-7)
A1 sih 2/
N/SR -1 _[R+ P; siniel|- —@2— A-8)
T L A |- 77 B
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/C’ - }Sw (A-9)

H

Y

A

f?"o = tan § cot @ [ + sih a. cot /3 sec § P,
(A-10)

A A

- cos Ol sec P R +Mysecd

Equations (A-1) - (A-8) are in the Hamilton's form; in Eqs. (A-9) and
(A-10), conservation of total angular momentum about the # and Y axes
has been used to eliminate the differential relationin Fy and F, . The

angular momenta are evaluated initially, being given by:

A

/C]‘j = - $in cof:@/fi'f + aos@,ao - slh o cot/jlz +cosd[;"‘
M1=P§ + Ry

Conservation of angular momentum about the £ axis and also of the total

Hamiltonian are reserved as checks on the numerical computation:

H M, = ~cos @ cot @ Fs - sing R - cosa gatﬂ/%-—sénaf; (A-11)

z
= const :
¥ 1 A2 ] 52 ' .2 -x: 1_pe
; H=zF + 5 R sn ta et 25 Fo
| (A-12) |
| J Pl v |
. + T7 ¥
| 2R'sin° @ ¢ f
= const
|
Also
Y A ‘ ) ' : i | ‘ !
oV _ - A sthf3 sin® sin (d-¢)S
oo
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R
where
S =

Ny BN Ko %9
w )
" Hu

The nondimensionalization used is

Characteristic Length:
Characteristic Mass:

Characteristic Time:

b33

—,2 [sznﬁ cos @ - cos/3 Sih ® cos (OZ-Q)] S

A A oA _&z}z/a ~(;‘2,}'/,\]
-ocacaR [e ;’a+ e s

[cos/p‘ cos ® + SL,nﬁ sih ® cos (d—gﬁ)] )

G, b, k[ et /f e dfi/7 ]
{/i"ﬁ ja~ Z,ZA/A? [cos/&’ cos ® + sirzﬂ sih & cos(ouﬁ)]}’/a

A " " o~ . Y
{Ra*- A2+ 2L R [cosﬁ cos ® + sinPB sin ® cos (A -@)]} ¢

I/M
p4
JI/M/V

where V is a characteristic velocity to be specified, I is the

moment of inertia, and M is the reduced mass for CO.,-M collisions.

Then
Ao,
n P Pe ’ Pf
E iV
5. R
I/M
M-
S
Vo= -
MvV?®

2

Vm_f » and a similar arrangement applies for ,P,g ’

’ M'x ’ My ’ Mz..
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C, = ¢ /MV" G, - c, /M, & - c, /MV?
d, = & WI7M, A= WM, A, aJIJM
,l = _:.z__.

yI/M
Z, - 52/1/1//‘4 oz, 2,/ JI7M

Initial conditions are based on the orientation of Fig. 11:

"

, a"o

. -1, b

* éo - s ( R’ >
| '@o = '/7’/2

t:sm ’
o:U
\\
]
~
X

{ 5 . W vI/M
2y T %o
5 . W vI1/M
/30 - ﬁa v
- V.. b
e, ” () ()
®, - o

DE

, V. V., L2\ e
R, " —T) COS@O = ""(-"\7") (1“'?)

Constants to be read in:

I, M, V, C;, C,, C,,& ,0, .,

17 727 74712

Initial condition parameters to be read in:

A, , /6o ) Ro’ ) Wy Wy, Voo ) b
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APPENDIX B
VIBRATIONAL DISPLACEMENTS

We refer to Fig, 12 and the definitions of S, , 5, , S, given
on page . The molecular axis is defined as the line parallel to the O-O
internuclear distance that passes through the molecular ¢, m. * Using the
definitions of §J-+5 = Qa4 L+ C&j + Qbﬁ and é‘;ﬂ,‘ Q-.Z\ + Qef +G’,2
given on page , we see the following geometrical relations between é‘m )
éj,,,, and S, , S, , S, :

P MOLECULAR AXIS

From the figure :

%

) JZ'; [QiH]

n

5,4—2.2 ‘éjﬂs

Sz = 'éJH. x QJ+3,ﬂé)’+a’ j
o 5ok

= ’ Qs Q, @, kQéyk 4

Q, Q, Q,

*This special definition serves for describing the normal vibrational dis-

placements in COZ'
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1@, @ - aa) - (0,0, - 2,8, @,0-2,Q,)k]
"

.- .
= , Qs ' [(ac. Q, - Q;Q,) + (Q,Q,- ?.,9, )+ (@ Q, - @, Q')a

2 , 2 2 Ve
o . 10,6 -2,0) + (QQ-aa)+ (@;Q, -0, Q,)°]
e [@) + & + Q"

¢ _ . :
53 = QJ.H, ’ QJ’0-3/IQJ‘+3

2 2 "2

S5, = (Q,_Q., t Qs By 4 Q;,Q.,)/(Q,, t Qs 4 Q:)

the mole-

’

In the initial orientation of the molecule, as described on page
cule is confined to the zy plane, so all x displacement components are zero,

Qe = @R, = O Also, the y axis is parallel to the 0-0 line, so that

@, = 0 ., Thus, the above relations reduce to

)

S -

QS
S, + @, \ initially
Q,

w
w
n
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