19 research outputs found

    Reproductive consequences of transient pathogen exposure across host genotypes and generations

    Get PDF
    To maximize fitness upon pathogenic infection, host organisms might reallocate energy and resources among life-history traits, such as reproduction and defense. The fitness costs of infection can result from both immune upregulation and direct pathogen exploitation. The extent to which these costs, separately and together, vary by host genotype and across generations is unknown. We attempted to disentangle these costs by transiently exposing wild isolates and a lab-domesticated strain of Caenorhabditis elegans nematodes to the pathogen Staphylococcus aureus, using exposure to heat-killed pathogens to distinguish costs due to immune upregulation and pathogen exploitation. We found that host nematodes exhibit a short-term delay in offspring production when exposed to live and heat-killed pathogen, but their lifetime fecundity (total offspring produced) recovered to control levels. We also found genetic variation between host isolates for both cumulative offspring production and magnitude of fitness costs. We further investigated whether there were maternal pathogen exposure costs (or benefits) to offspring and revealed a positive correlation between the magnitude of the pathogen-induced delay in the parent's first day of reproduction and the cost to offspring population growth. Our findings highlight the capacity for hosts to recover fecundity after transient exposure to a pathogen

    Sexual selection and the evolution of condition-dependence: an experimental test at two resource levels

    Get PDF
    Stronger condition-dependence in sexually selected traits is well-documented, but how this relationship is established remains unknown. Moreover, resource availability can shape responses to sexual selection, but resource effects on the relationship between sexual selection and condition-dependence are also unknown. In this study, we directly test the hypotheses that sexual selection drives the evolution of stronger-condition-dependence and that resource availability affects the outcome, by evolving fruit flies (Drosophila melanogaster) under relatively strong or weak sexual selection (through varied sex ratios) and at resource-poor or resource-rich adult diets. We then experimentally manipulated condition via developmental diet and assessed condition-dependence in adult morphology, behavior, and reproduction. We observed stronger condition-dependence in female size in male-biased populations and in female ovariole production in resource-limited populations. However, we found no evidence that male condition-dependence increased in response to sexual selection, or that responses depended on resource levels. These results offer no support for the hypotheses that sexual selection increases male condition-dependence or that sexual selection's influence on condition-dependence is influenced by resource availability. Our study is, to our knowledge, the first experimental test of these hypotheses. If the results we report are general, then sexual selection's influence on the evolution of condition-dependence may be less important than predicted

    Sexual selection and the evolution of condition-dependence: an experimental test at two resource levels

    Get PDF
    Stronger condition-dependence in sexually selected traits is well-documented, but how this relationship is established remains unknown. Moreover, resource availability can shape responses to sexual selection, but resource effects on the relationship between sexual selection and condition-dependence are also unknown. In this study, we directly test the hypotheses that sexual selection drives the evolution of stronger-condition-dependence and that resource availability affects the outcome, by evolving fruit flies (Drosophila melanogaster) under relatively strong or weak sexual selection (through varied sex ratios) and at resource-poor or resource-rich adult diets. We then experimentally manipulated condition via developmental diet and assessed condition-dependence in adult morphology, behavior, and reproduction. We observed stronger condition-dependence in female size in male-biased populations and in female ovariole production in resource-limited populations. However, we found no evidence that male condition-dependence increased in response to sexual selection, or that responses depended on resource levels. These results offer no support for the hypotheses that sexual selection increases male condition-dependence or that sexual selection’s influence on condition-dependence is influenced by resource availability. Our study is, to our knowledge, the first experimental test of these hypotheses. If the results we report are general, then sexual selection’s influence on the evolution of condition-dependence may be less important than predicted

    Ecological conditions determine extinction risk in co-evolving bacteria-phage populations.

    Get PDF
    BACKGROUND: Antagonistic coevolution between bacteria and their viral parasites, phage, drives continual evolution of resistance and infectivity traits through recurrent cycles of adaptation and counter-adaptation. Both partners are vulnerable to extinction through failure of adaptation. Environmental conditions may impose unequal abiotic selection pressures on each partner, destabilising the coevolutionary relationship and increasing the extinction risk of one partner. In this study we explore how the degree of population mixing and resource supply affect coevolution-induced extinction risk by coevolving replicate populations of Pseudomonas fluorescens SBW25 with its associated lytic phage SBW25Đ€2 under four treatment regimens incorporating low and high resource availability with mixed or static growth conditions. RESULTS: We observed an increased risk of phage extinction under population mixing, and in low resource conditions. High levels of evolved bacterial resistance promoted phage extinction at low resources under both mixed and static conditions, whereas phage populations could survive when phage susceptible bacterial genotypes rose to high frequency. CONCLUSIONS: These findings demonstrate that phage extinction risk is influenced by multiple abiotic conditions, which together act to destabilise the bacteria-phage coevolutionary relationship. The risk of coevolution-induced extinction is therefore dependent on the ecological context

    Microbial protection favours mortality tolerance and alters host-parasite coevolutionary dynamics

    No full text
    Data supporting the Current Biology paper: Microbial protection favours mortality tolerance and alters host-parasite coevolutionary dynamicsTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Host and parasite evolution in a tangled bank

    No full text
    Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective

    Host and parasite evolution in a tangled bank

    No full text
    Most hosts and parasites exist in diverse communities wherein they interact with other species, spanning the parasite-mutualist continuum. These additional interactions have the potential to impose selection on hosts and parasites and influence the patterns and processes of their evolution. Yet, host-parasite interactions are almost exclusively studied in species pairs. A wave of new research has incorporated a multispecies community context, showing that additional ecological interactions can alter components of host and parasite fitness, as well as interaction specificity and virulence. Here, we synthesize these findings to assess the effects of increased species diversity on the patterns and processes of host and parasite evolution. We argue that our understanding of host-parasite interactions would benefit from a richer biotic perspective

    Host genetic diversity limits parasite success beyond agricultural systems: a meta-analysis

    No full text
    There is evidence that human activities are reducing the population genetic diversity of species worldwide. Given the prediction that parasites better exploit genetically homogeneous host populations, many species could be vulnerable to disease outbreaks. While agricultural studies have shown the devastating effects of infectious disease in crop monocultures, the widespread nature of this diversity–disease relationship remains unclear in natural systems. Here, we provide broad support that high population genetic diversity can protect against infectious disease by conducting a meta-analysis of 23 studies, with a total of 67 effect sizes. We found that parasite functional group (micro- or macroparasite) affects the presence of the effect and study setting (field or laboratory-based environment) influences the magnitude. Our study also suggests that host genetic diversity is overall a robust defence against infection regardless of host reproduction, parasite host range, parasite diversity, virulence and the method by which parasite success was recorded. Combined, these results highlight the importance of monitoring declines of host population genetic diversity as shifts in parasite distributions could have devastating effects on at-risk populations in nature

    Mutual fitness benefits arise during coevolution in a nematode‐defensive microbe model

    No full text
    Species interactions can shift along the parasitism‐mutualism continuum. However, the consequences of these transitions for coevolutionary interactions remain unclear. We experimentally coevolved a novel species interaction between Caenorhabditis elegans hosts and a mildly parasitic bacterium, Enterococcus faecalis, with host‐protective properties against virulent Staphylococcus aureus. Coinfections drove the evolutionary transition of the C. elegans–E. faecalis relationship toward a reciprocally beneficial interaction. As E. faecalis evolved to protect nematodes against S. aureus infection, hosts adapted by accommodating greater numbers of protective bacteria. The mutualism was strongest in pairings of contemporary coevolved populations. To generally assess the conditions under which these defensive mutualisms can arise and coevolve, we analyzed a model that showed that they are favored when mild parasites confer an intermediate level of protection. Our results reveal that coevolution can shape the transition of animal‐parasite interactions toward defensive symbioses in response to coinfections

    Mutual fitness benefits arise during coevolution in a nematode‐defensive microbe model

    Get PDF
    Species interactions can shift along the parasitism‐mutualism continuum. However, the consequences of these transitions for coevolutionary interactions remain unclear. We experimentally coevolved a novel species interaction between Caenorhabditis elegans hosts and a mildly parasitic bacterium, Enterococcus faecalis, with host‐protective properties against virulent Staphylococcus aureus. Coinfections drove the evolutionary transition of the C. elegans–E. faecalis relationship toward a reciprocally beneficial interaction. As E. faecalis evolved to protect nematodes against S. aureus infection, hosts adapted by accommodating greater numbers of protective bacteria. The mutualism was strongest in pairings of contemporary coevolved populations. To generally assess the conditions under which these defensive mutualisms can arise and coevolve, we analyzed a model that showed that they are favored when mild parasites confer an intermediate level of protection. Our results reveal that coevolution can shape the transition of animal‐parasite interactions toward defensive symbioses in response to coinfections
    corecore