1,284 research outputs found

    Early infant feeding and adiposity risk: from infancy to adulthood

    Get PDF
    Introduction: Systematic reviews suggest that a longer duration of breast-feeding is associated with a reduction in the risk of later overweight and obesity. Most studies examining breast-feeding in relation to adiposity have not used longitudinal analysis. In our study, we aimed to examine early infant feeding and adiposity risk in a longitudinal cohort from birth to young adulthood using new as well as published data. Methods: Data from the Western Australian Pregnancy Cohort (Raine) Study in Perth, W.A., Australia, were used to examine associations between breast-feeding and measures of adiposity at 1, 2, 3, 6, 8, 10, 14, 17, and 20 years. Results: Breast-feeding was measured in a number of ways. Longer breast-feeding (in months) was associated with reductions in weight z-scores between birth and 1 year (β = -0.027; p \u3c 0.001) in the adjusted analysis. At 3 years, breast-feeding for \u3c4 months increased the odds of infants experiencing early rapid growth (OR 2.05; 95% CI 1.43-2.94; p \u3c 0.001). From 1 to 8 years, children breast-fed for ≤4 months compared to ≥12 months had a significantly greater probability of exceeding the 95th percentile of weight. The age at which breast-feeding was stopped and a milk other than breast milk was introduced (introduction of formula milk) played a significant role in the trajectory of the BMI from birth to 14 years; the 4-month cutoff point was consistently associated with a higher BMI trajectory. Introduction of a milk other than breast milk before 6 months compared to at 6 months or later was a risk factor for being overweight or obese at 20 years of age (OR 1.47; 95% CI 1.12-1.93; p = 0.005). Discussion: Breast-feeding until 6 months of age and beyond should be encouraged and is recommended for protection against increased adiposity in childhood, adolescence, and young adulthood. Adverse long-term effects of early growth acceleration are fundamental in later overweight and obesity. Formula feeding stimulates a higher postnatal growth velocity, whereas breast-feeding promotes slower growth and a reduced likelihood of overweight and obesity. Biological mechanisms underlying the protective effect of breast-feeding against obesity are based on the unique composition and metabolic and physiological responses to human milk

    Coronary microvascular ischemia in hypertrophic cardiomyopathy - a pixel-wise quantitative cardiovascular magnetic resonance perfusion study.

    Get PDF
    BACKGROUND: Microvascular dysfunction in HCM has been associated with adverse clinical outcomes. Advances in quantitative cardiovascular magnetic resonance (CMR) perfusion imaging now allow myocardial blood flow to be quantified at the pixel level. We applied these techniques to investigate the spectrum of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and to explore its relationship with fibrosis and wall thickness. METHODS: CMR perfusion imaging was undertaken during adenosine-induced hyperemia and again at rest in 35 patients together with late gadolinium enhancement (LGE) imaging. Myocardial blood flow (MBF) was quantified on a pixel-by-pixel basis from CMR perfusion images using a Fermi-constrained deconvolution algorithm. Regions-of-interest (ROI) in hypoperfused and hyperemic myocardium were identified from the MBF pixel maps. The myocardium was also divided into 16 AHA segments. RESULTS: Resting MBF was significantly higher in the endocardium than in the epicardium (mean ± SD: 1.25 ± 0.35 ml/g/min versus 1.20 ± 0.35 ml/g/min, P < 0.001), a pattern that reversed with stress (2.00 ± 0.76 ml/g/min versus 2.36 ± 0.83 ml/g/min, P < 0.001). ROI analysis revealed 11 (31%) patients with stress MBF lower than resting values (1.05 ± 0.39 ml/g/min versus 1.22 ± 0.36 ml/g/min, P = 0.021). There was a significant negative association between hyperemic MBF and wall thickness (β = −0.047 ml/g/min per mm, 95% CI: −0.057 to −0.038, P < 0.001) and a significantly lower probability of fibrosis in a segment with increasing hyperemic MBF (odds ratio per ml/g/min: 0.086, 95% CI: 0.078 to 0.095, P = 0.003). CONCLUSIONS: Pixel-wise quantitative CMR perfusion imaging identifies a subgroup of patients with HCM that have localised severe microvascular dysfunction which may give rise to myocardial ischemia

    Model-based lamotrigine clearance changes during pregnancy: clinical implication

    Get PDF
    Objective: The objective of the study was to characterize changes in the oral clearance (CL/F) of lamotrigine (LTG) over the course of pregnancy and the postpartum period through a model-based approach incorporating clinical characteristics that may influence CL/F, in support of developing clinical management guidelines. Methods: Women receiving LTG therapy who were pregnant or planning pregnancy were enrolled. Maternal blood samples were collected at each visit. A pharmacokinetic analysis was performed using a population-based, nonlinear, mixed-effects model. Results: A total of 600 LTG concentrations from 60 women (64 pregnancies) were included. The baseline LTG CL/F was 2.16 L/h with a between-subject variability of 40.6%. The influence of pregnancy on CL/F was described by gestational week. Two subpopulations of women emerged based on the rate of increase in LTG CL/F during pregnancy. The gestational age-associated increase in CL/F displayed a 10-fold higher rate in 77% of the women (0.118 L/h per week) compared to 23% (0.0115 L/h per week). The between-subject variability in these slopes was 43.0%. The increased CL/F at delivery declined to baseline values with a half-life of 0.55 weeks. Interpretation The majority of women had a substantial increase in CL/F from 2.16 to 6.88 L/h by the end of pregnancy, whereas 23% of women had a minimal increase. An increase in CL/F may correspond to decreases in LTG blood concentrations necessitating the need for more frequent dosage adjustments and closer monitoring in some pregnant women with epilepsy. Postpartum doses should be tapered to preconception dose ranges within 3 weeks of delivery

    Cardiovascular magnetic resonance activity in the United Kingdom: a survey on behalf of the british society of cardiovascular magnetic resonance

    Get PDF
    &lt;p&gt;Background: The indications, complexity and capabilities of cardiovascular magnetic resonance (CMR) have rapidly expanded. Whether actual service provision and training have developed in parallel is unknown.&lt;/p&gt; &lt;p&gt;Methods: We undertook a systematic telephone and postal survey of all public hospitals on behalf of the British Society of Cardiovascular Magnetic Resonance to identify all CMR providers within the United Kingdom.&lt;/p&gt; &lt;p&gt;Results: Of the 60 CMR centres identified, 88% responded to a detailed questionnaire. Services are led by cardiologists and radiologists in equal proportion, though the majority of current trainees are cardiologists. The mean number of CMR scans performed annually per centre increased by 44% over two years. This trend was consistent across centres of different scanning volumes. The commonest indication for CMR was assessment of heart failure and cardiomyopathy (39%), followed by coronary artery disease and congenital heart disease. There was striking geographical variation in CMR availability, numbers of scans performed, and distribution of trainees. Centres without on site scanning capability refer very few patients for CMR. Just over half of centres had a formal training programme, and few performed regular audit.&lt;/p&gt; &lt;p&gt;Conclusion: The number of CMR scans performed in the UK has increased dramatically in just two years. Trainees are mainly located in large volume centres and enrolled in cardiology as opposed to radiology training programmes.&lt;/p&gt

    A Randomized, Placebo-Controlled, Double-Blind Trial of the Effect of Combined Therapy With Deferoxamine and Deferiprone on Myocardial Iron in Thalassemia Major Using Cardiovascular Magnetic Resonance

    Get PDF
    Background— Cardiac complications secondary to iron overload are the leading cause of death in β-thalassemia major. Approximately two thirds of patients maintained on the parenteral iron chelator deferoxamine have myocardial iron loading. The oral iron chelator deferiprone has been demonstrated to remove myocardial iron, and it has been proposed that in combination with deferoxamine it may have additional effect. Methods and Results— Myocardial iron loading was assessed with the use of myocardial T2* cardiovascular magnetic resonance in 167 patients with thalassemia major receiving standard maintenance chelation monotherapy with subcutaneous deferoxamine. Of these patients, 65 with mild to moderate myocardial iron loading (T2* 8 to 20 ms) entered the trial with continuation of subcutaneous deferoxamine and were randomized to receive additional oral placebo (deferoxamine group) or oral deferiprone 75 mg/kg per day (combined group). The primary end point was the change in myocardial T2* over 12 months. Secondary end points of endothelial function (flow-mediated dilatation of the brachial artery) and cardiac function were also measured with cardiovascular magnetic resonance. There were significant improvements in the combined treatment group compared with the deferoxamine group in myocardial T2* (ratio of change in geometric means 1.50 versus 1.24; P =0.02), absolute left ventricular ejection fraction (2.6% versus 0.6%; P =0.05), and absolute endothelial function (8.8% versus 3.3%; P =0.02). There was also a significantly greater improvement in serum ferritin in the combined group (−976 versus −233 μg/L; P <0.001). Conclusions— In comparison to the standard chelation monotherapy of deferoxamine, combination treatment with additional deferiprone reduced myocardial iron and improved the ejection fraction and endothelial function in thalassemia major patients with mild to moderate cardiac iron loading

    ALK Status Testing in Non–Small-Cell Lung Carcinoma by FISH on ThinPrep Slides with Cytology Material

    Get PDF
    Introduction:Oncogenic anaplastic lymphoma kinase (ALK) gene rearrangements in non–small-cell lung carcinomas (NSCLC) provide the basis for targeted therapy with crizotinib and other specific ALK inhibitors. Treatment eligibility is conventionally determined by the Food and Drug Administration–approved companion diagnostic fluorescence in situ hybridization (FISH) assay on paraffin-embedded tissue (PET). On limited samples such as fine needle aspiration–derived cytoblocks, FISH for ALK is often uninformative. FISH performed on liquid-based ThinPrep slides (ThinPrep-FISH) may represent a robust alternative.Methods:Two hundred thirty cytology samples from 217 patients with advanced NSCLC, including a consecutive series of 179 specimens, were used to generate matched ThinPrep slides and paraffin cytoblocks. The same ThinPrep slides used for cytologic diagnosis were assessed by standard ALK break-apart two-color probe FISH, after etching of tumor areas. Ultrasensitive ALK immunohistochemistry (IHC) on corresponding cytoblocks [D5F3 antibody, OptiView signal amplification] served as the reference data set.Results:ThinPrep-FISH ALK signals were robust in 228 of 230 cases and not compromised by nuclear truncation inherent in paraffin-embedded tissue–FISH; only two samples displayed no signals. Nine of 178 informative cases (5%) in the consecutive series and 18 of 228 informative cases (7.8%) overall were ALK rearranged by ThinPrep-FISH. In 154 informative matched ThinPrep-FISH and cytoblock-IHC samples, 152 were concordant (10, 6.5% ALK status positive; 142, 92.2% ALK status negative), and two (1.3%) were ThinPrep-FISH positive but IHC negative (sensitivity 100%, specificity 98.6%, overall agreement 98.7%).Conclusion:Detection of ALK gene rearrangements in liquid cytology ThinPrep slides derived from patients with NSCLC can be confidently used for clinical ALK molecular testing

    Validation of T2* in-line analysis for tissue iron quantification at 1.5 T.

    Get PDF
    BACKGROUND: There is a need for improved worldwide access to tissue iron quantification using T2* cardiovascular magnetic resonance (CMR). One route to facilitate this would be simple in-line T2* analysis widely available on MR scanners. We therefore compared our clinically validated and established T2* method at Royal Brompton Hospital (RBH T2*) against a novel work-in-progress (WIP) sequence with in-line T2* measurement from Siemens (WIP T2*). METHODS: Healthy volunteers (n = 22) and patients with iron overload (n = 78) were recruited (53 males, median age 34 years). A 1.5 T study (Magnetom Avanto, Siemens) was performed on all subjects. The same mid-ventricular short axis cardiac slice and transaxial slice through the liver were used to acquire both RBH T2* images and WIP T2* maps for each participant. Cardiac white blood (WB) and black blood (BB) sequences were acquired. Intraobserver, interobserver and interstudy reproducibility were measured on the same data from a subset of 20 participants. RESULTS: Liver T2* values ranged from 0.8 to 35.7 ms (median 5.1 ms) and cardiac T2* values from 6.0 to 52.3 ms (median 31 ms). The coefficient of variance (CoV) values for direct comparison of T2* values by RBH and WIP were 6.1-7.8 % across techniques. Accurate delineation of the septum was difficult on some WIP T2* maps due to artefacts. The inability to manually correct for noise by truncation of erroneous later echo times led to some overestimation of T2* using WIP T2* compared with the RBH T2*. Reproducibility CoV results for RBH T2* ranged from 1.5 to 5.7 % which were better than the reproducibility of WIP T2* values of 4.1-16.6 %. CONCLUSIONS: Iron estimation using the T2* CMR sequence in combination with Siemens' in-line data processing is generally satisfactory and may help facilitate global access to tissue iron assessment. The current automated T2* map technique is less good for tissue iron assessment with noisy data at low T2* values

    Perinatal testosterone exposure and autistic-like traits in the general population: a longitudinal pregnancy-cohort study

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.jneurodevdisorders.com/content/4/1/25 Extent: 12p.Background: Increased prenatal testosterone exposure has been hypothesized as a mechanism underlying autism spectrum disorders (ASD). However, no studies have prospectively measured prenatal testosterone exposure and ASD. The current study sought to determine whether testosterone concentrations in umbilical cord blood are associated with a clinical diagnosis of ASD in a small number of children and with autistic-like traits in the general population. Methods: Umbilical cord blood was collected from 707 children. Samples were analyzed for total (TT) and bioavailable (BioT) testosterone concentrations. Parent report indicated that five individuals had a clinical diagnosis of ASD. Those participants without a diagnosis were approached in early adulthood to complete the Autism-Spectrum Quotient (AQ), a self-report measure of autistic-like traits, with 184 males (M = 20.10 years; SD= 0.65 years) and 190 females (M = 19.92 years; SD=0.68 years) providing data. Results: The BioT and TT concentrations of the five children diagnosed with ASD were within one standard-deviation of the sex-specific means. Spearman’s rank-order coefficients revealed no significant correlations between TT levels and scores on any AQ scale among males (rho range: -.01 to .06) or females (rho value range: -.07 to .01). There was also no significant association between BioT or TT concentrations and AQ scores among males (rho value range: -.07 to .08) or females (rho value range: -.06 to .12). Males were more likely than females to have ‘high’ scores (upper decile) on the AQ scale relating pattern and detail processing. However, the likelihood of a high score on this scale was unrelated to BioT and TT concentrations in both males and females. Conclusions: These findings indicate that testosterone concentrations from umbilical cord blood are unrelated to autistic-like traits in the general population. However, the findings do not exclude an association between testosterone exposure in early intrauterine life and ASD.Andrew JO Whitehouse, Eugen Mattes, Murray T Maybery, Cheryl Dissanayake, Michael Sawyer, Rachel M Jones, Craig E Pennell, Jeffrey A Keelan and Martha Hicke
    corecore