285 research outputs found
The algebra of the box spline
In this paper we want to revisit results of Dahmen and Micchelli on
box-splines which we reinterpret and make more precise. We compare these ideas
with the work of Brion, Szenes, Vergne and others on polytopes and partition
functions.Comment: 69 page
Box splines and the equivariant index theorem
In this article, we start to recall the inversion formula for the convolution
with the Box spline. The equivariant cohomology and the equivariant K-theory
with respect to a compact torus G of various spaces associated to a linear
action of G in a vector space M can be both described using some vector spaces
of distributions, on the dual of the group G or on the dual of its Lie algebra.
The morphism from K-theory to cohomology is analyzed and the multiplication by
the Todd class is shown to correspond to the operator (deconvolution) inverting
the semidiscrete convolution with a box spline. Finally, the multiplicities of
the index of a G-transversally elliptic operator on M are determined using the
infinitesimal index of the symbol.Comment: 44 page
On the Ado Theorem for finite Lie conformal algebras with Levi decomposition
We prove that a finite torsion-free conformal Lie algebra with a splitting
solvable radical has a finite faithful conformal representation.Comment: 11 page
All metrics have curvature tensors characterised by its invariants as a limit: the \epsilon-property
We prove a generalisation of the -property, namely that for any
dimension and signature, a metric which is not characterised by its polynomial
scalar curvature invariants, there is a frame such that the components of the
curvature tensors can be arbitrary close to a certain "background". This
"background" is defined by its curvature tensors: it is characterised by its
curvature tensors and has the same polynomial curvature invariants as the
original metric.Comment: 6 page
On certain modules of covariants in exterior algebras
We study the structure of the space of covariants for a
certain class of infinitesimal symmetric spaces
such that the space of invariants is an exterior algebra with
. We prove that they are free modules over
the subalgebra of rank . In addition we
will give an explicit basis of . As particular cases we will recover same
classical results. In fact we will describe the structure of , the space of the equivariant matrix
valued alternating multilinear maps on the space of (skew-symmetric or
symmetric with respect to a specific involution) matrices, where is the
symplectic group or the odd orthogonal group. Furthermore we prove new
polynomial trace identities.Comment: Title changed. Results have been generalised to other infinitesimal
symmetric space
- …
