research

On certain modules of covariants in exterior algebras

Abstract

We study the structure of the space of covariants B:=((g/k)g)k,B:=\left(\bigwedge (\mathfrak g/\mathfrak k)^*\otimes \mathfrak g\right)^{\mathfrak k}, for a certain class of infinitesimal symmetric spaces (g,k)(\mathfrak g,\mathfrak k) such that the space of invariants A:=((g/k))kA:=\left(\bigwedge (\mathfrak g/\mathfrak k)^*\right)^{\mathfrak k} is an exterior algebra (x1,...,xr),\wedge (x_1,...,x_r), with r=rk(g)rk(k)r=rk(\mathfrak g)-rk(\mathfrak k). We prove that they are free modules over the subalgebra Ar1=(x1,...,xr1)A_{r-1}=\wedge (x_1,...,x_{r-1}) of rank 4r4r. In addition we will give an explicit basis of BB. As particular cases we will recover same classical results. In fact we will describe the structure of ((Mn±)Mn)G\left(\bigwedge (M_n^{\pm})^*\otimes M_n\right)^G, the space of the GG-equivariant matrix valued alternating multilinear maps on the space of (skew-symmetric or symmetric with respect to a specific involution) matrices, where GG is the symplectic group or the odd orthogonal group. Furthermore we prove new polynomial trace identities.Comment: Title changed. Results have been generalised to other infinitesimal symmetric space

    Similar works

    Full text

    thumbnail-image

    Available Versions