58 research outputs found

    Effets comparatifs des acides gras omega-3 (ALA, EPA, DHA) sur la sensibilité à l’insuline des cellules musculaires C2C12 dans un contexte lipotoxique

    Get PDF
    Objectifs :Etudier le rôle des ω3 sur la lipotoxicité induite par l’acide gras saturé palmitate (PAL, C16:0) dans un modèle de cellule musculaire C2C12.Identifier les effets propres de chaque w3 (ALA, EPA et DHA) à dose équivalente sur la fluidité des membranes et la réponse à l’insuline.Suivre le devenir intracellulaire du [1-14C]-palmitate en présence d’un w3 et définir les classes de lipides altérées.Rechercher les voies de signalisation impliquées dans la modulation de la réponse à l’insuline

    Loss of thymidine phosphorylase activity disrupts adipocyte differentiation and induces insulin-resistant lipoatrophic diabetes.

    Get PDF
    BACKGROUND: Thymidine phosphorylase (TP), encoded by the TYMP gene, is a cytosolic enzyme essential for the nucleotide salvage pathway. TP catalyzes the phosphorylation of the deoxyribonucleosides, thymidine and 2'-deoxyuridine, to thymine and uracil. Biallelic TYMP variants are responsible for Mitochondrial NeuroGastroIntestinal Encephalomyopathy (MNGIE), an autosomal recessive disorder characterized in most patients by gastrointestinal and neurological symptoms, ultimately leading to death. Studies on the impact of TYMP variants in cellular systems with relevance to the organs affected in MNGIE are still scarce and the role of TP in adipose tissue remains unexplored. METHODS: Deep phenotyping was performed in three patients from two families carrying homozygous TYMP variants and presenting with lipoatrophic diabetes. The impact of the loss of TP expression was evaluated using a CRISPR-Cas9-mediated TP knockout (KO) strategy in human adipose stem cells (ASC), which can be differentiated into adipocytes in vitro. Protein expression profiles and cellular characteristics were investigated in this KO model. RESULTS: All patients had TYMP loss-of-function variants and first presented with generalized loss of adipose tissue and insulin-resistant diabetes. CRISPR-Cas9-mediated TP KO in ASC abolished adipocyte differentiation and decreased insulin response, consistent with the patients' phenotype. This KO also induced major oxidative stress, altered mitochondrial functions, and promoted cellular senescence. This translational study identifies a new role of TP by demonstrating its key regulatory functions in adipose tissue. CONCLUSIONS: The implication of TP variants in atypical forms of monogenic diabetes shows that genetic diagnosis of lipodystrophic syndromes should include TYMP analysis. The fact that TP is crucial for adipocyte differentiation and function through the control of mitochondrial homeostasis highlights the importance of mitochondria in adipose tissue biology

    Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate

    Get PDF
    Background/Objectives: Short-chain fatty acids, produced by microbiome fermentation of carbohydrates, have been linked to a reduction in appetite, body weight and adiposity. However, determining the contribution of central and peripheral mechanisms to these effects has not been possible. Subjects/Methods:C57BL/6 mice fed with either normal or high-fat diet were treated with nanoparticle-delivered acetate, and the effects on metabolism were investigated. Results:In the liver, acetate decreased lipid accumulation and improved hepatic function, as well as increasing mitochondrial efficiency. In white adipose tissue, it inhibited lipolysis and induced 'browning', increasing thermogenic capacity that led to a reduction in body adiposity. Conclusions:This study provides novel insights into the peripheral mechanism of action of acetate, independent of central action, including ‘browning’ and enhancement of hepatic mitochondrial function

    Role of the mitochondrial DnaJ homologue, Mdj1p, in the prevention of heat-induced protein aggregation

    No full text
    The role of the mitochondrial Hsp70 system in the prevention of heat-induced protein aggregation was studied in isolated mitochondria from Saccharomyces cerevisiae. Firefly luciferase was employed as a thermolabile tester protein. After shift to 40 degrees Celsius transient increase of mt-Hsp70/luciferase complex was observed, which required functional Mdj1p and Mge1p, the mitochondrial homologues of DnaJ and GrpE. The kinetics of luciferase aggregation, however, were not influenced by mutations in either mt-Hsp70 or Mge1p. Only the absence of Mdj1p led to enhanced protein aggregation. Thus, a central role in the transient protection against heat stress is attributed to this mitochondrial DnaJ homologue
    corecore