485 research outputs found

    Clausius inequality and optimality of quasi static transformations for nonequilibrium stationary states

    Full text link
    Nonequilibrium stationary states of thermodynamic systems dissipate a positive amount of energy per unit of time. If we consider transformations of such states that are realized by letting the driving depend on time, the amount of energy dissipated in an unbounded time window becomes then infinite. Following the general proposal by Oono and Paniconi and using results of the macroscopic fluctuation theory, we give a natural definition of a renormalized work performed along any given transformation. We then show that the renormalized work satisfies a Clausius inequality and prove that equality is achieved for very slow transformations, that is in the quasi static limit. We finally connect the renormalized work to the quasi potential of the macroscopic fluctuation theory, that gives the probability of fluctuations in the stationary nonequilibrium ensemble

    The effect of Aharanov-Bohm phase on the magnetic-field dependence of two-pulse echos in glasses at low temperatures

    Full text link
    The anomalous response of glasses in the echo amplitude experiment is explained in the presence of a magnetic field. We have considered the low energy excitations in terms of an effective two level system. The effective model is constructed on the flip-flop configuration of two interacting two level systems. The magnetic field affects the tunneling amplitude through the Aharanov-Bohm effect. The effective model has a lower scale of energy in addition to the new distribution of tunneling parameters which depend on the interaction. We are able to explain some features of echo amplitude versus a magnetic field, namely, the dephasing effect at low magnetic fields, dependence on the strength of the electric field, pulse separation effect and the influence of temperature. However this model fails to explain the isotope effects which essentially can be explained by the nuclear quadrupole moment. We will finally discuss the features of our results.Comment: 8 pages, 7 figure

    A precursor state to unconventional superconductivity in CeIrIn5{_5}

    Full text link
    We present sensitive measurements of the Hall effect and magnetoresistance in CeIrIn5{_5} down to temperatures of 50 mK and magnetic fields up to 15 T. The presence of a low temperature coherent Kondo state is established. Deviations from Kohler's rule and a quadratic temperature dependence of the cotangent of the Hall angle are reminiscent of properties observed in the high temperature superconducting cuprates. The most striking observation pertains to the presence of a \textit{precursor} state--characterized by a change in the Hall mobility--that appears to precede the superconductivity in this material, in similarity to the pseudogap in the cuprate high TcT_c superconductors.Comment: 4 figure

    Two dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2_2

    Full text link
    We report two dimensional Dirac fermions and quantum magnetoresistance in single crystals of CaMnBi2_2. The non-zero Berry's phase, small cyclotron resonant mass and first-principle band structure suggest the existence of the Dirac fermions in the Bi square nets. The in-plane transverse magnetoresistance exhibits a crossover at a critical field B∗B^* from semiclassical weak-field B2B^2 dependence to the high-field unsaturated linear magnetoresistance (∼120\sim 120% in 9 T at 2 K) due to the quantum limit of the Dirac fermions. The temperature dependence of B∗B^* satisfies quadratic behavior, which is attributed to the splitting of linear energy dispersion in high field. Our results demonstrate the existence of two dimensional Dirac fermions in CaMnBi2_2 with Bi square nets.Comment: 5 pages, 4 figure

    Electron-Beam Driven Relaxation Oscillations in Ferroelectric Nanodisks

    Get PDF
    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate (PZT) nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems.Comment: 5 pages, 2 figure

    New excitations in bcc 4^{4}He - an inelastic neutron scattering study

    Full text link
    We report neutron scattering measurements on bcc solid 4^{4}% He. We studied the phonon branches and the recently discovered ''optic-like'' branch along the main crystalline directions. In addition, we discovered another, dispersionless "optic-like'' branch at an energy around 1 meV (∼\sim~11K). The properties of the two "optic-like" branches seem different. Since one expects only 3 acoustic phonon branches in a monoatomic cubic crystal, these new branches must represent different type of excitations. One possible interpretation involves localized excitations unique to a quantum solid.Comment: 4 pages, 3 figures, accepted by PRB, Rapid Communication

    Damping in high-frequency metallic nanomechanical resonators

    Full text link
    We have studied damping in polycrystalline Al nanomechanical resonators by measuring the temperature dependence of their resonance frequency and quality factor over a temperature range of 0.1 - 4 K. Two regimes are clearly distinguished with a crossover temperature of 1 K. Below 1 K we observe a logarithmic temperature dependence of the frequency and linear dependence of damping that cannot be explained by the existing standard models. We attribute these phenomena to the effect of the two-level systems characterized by the unexpectedly long (at least two orders of magnitude longer) relaxation times and discuss possible microscopic models for such systems. We conclude that the dynamics of the two-level systems is dominated by their interaction with one-dimensional phonon modes of the resonators.Comment: 5 pages, 3 figure

    Conservation Status of Marine Biodiversity in Oceania: An Analysis of Marine Species on the IUCN Red List of Threatened Species

    Get PDF
    Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciformfish groups. Many of the species in these groups are threatened by themodification or destruction of coastal habitats, overfishing fromdirect or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania,many important fish groups are still in urgent need of assessment
    • …
    corecore