1,025 research outputs found
Spatial transformations of diffusion tensor magnetic resonance images
The authors address the problem of applying spatial transformations (or “image warps”) to diffusion tensor magnetic resonance images. The orientational information that these images contain must be handled appropriately when they are transformed spatially during image registration. The authors present solutions for global transformations of three-dimensional images up to 12-parameter affine complexity and indicate how their methods can be extended for higher order transformations. Several approaches are presented and tested using synthetic data. One method, the preservation of principal direction algorithm, which takes into account shearing, stretching and rigid rotation, is shown to be the most effective. Additional registration experiments are performed on human brain data obtained from a single subject, whose head was imaged in three different orientations within the scanner. All of the authors' methods improve the consistency between registered and target images over naive warping algorithms
The 3D soft X-ray cluster-AGN cross-correlation function in the ROSAT NEP survey
X-ray surveys facilitate investigations of the environment of AGNs. Deep
Chandra observations revealed that the AGNs source surface density rises near
clusters of galaxies. The natural extension of these works is the measurement
of spatial clustering of AGNs around clusters and the investigation of relative
biasing between active galactic nuclei and galaxies near clusters.The major
aims of this work are to obtain a measurement of the correlation length of AGNs
around clusters and a measure of the averaged clustering properties of a
complete sample of AGNs in dense environments. We present the first measurement
of the soft X-ray cluster-AGN cross-correlation function in redshift space
using the data of the ROSAT-NEP survey. The survey covers 9x9 deg^2 around the
North Ecliptic Pole where 442 X-ray sources were detected and almost completely
spectroscopically identified. We detected a >3sigma significant clustering
signal on scales s<50 h70^-1 Mpc. We performed a classical maximum-likelihood
power-law fit to the data and obtained a correlation length s_0=8.7+1.2-0.3
h_70-1 Mpc and a slope gamma=1.7$^+0.2_-0.7 (1sigma errors). This is a strong
evidence that AGNs are good tracers of the large scale structure of the
Universe. Our data were compared to the results obtained by cross-correlating
X-ray clusters and galaxies. We observe, with a large uncertainty, that the
bias factor of AGN is similar to that of galaxies.Comment: 4 pages, 2 figure, proceedings of the Conference "At the edge of the
Universe", Sintra Portugal, October 2006. To be published on the Astronomical
Society of the Pacific Conference Series (ASPCS
The initial conditions of the universe: how much isocurvature is allowed?
We investigate the constraints imposed by the current data on correlated
mixtures of adiabatic and non-adiabatic primordial perturbations. We discover
subtle flat directions in parameter space that tolerate large (~60%)
contributions of non-adiabatic fluctuations. In particular, larger values of
the baryon density and a spectral tilt are allowed. The cancellations in the
degenerate directions are explored and the role of priors elucidated.Comment: 4 pages, 4 figures. Submitted to PR
Transverse velocities and matter gradient correlations: a new signal and a new challenge to moving-lens analyses
An observer that is moving towards a high-density region sees, on average, a
higher matter density and more foreground-emitting sources ahead than behind
themself. Consequently, the average abundance and luminosity of objects
producing cosmological signals around an in-falling dark matter halo is larger
in the direction of the halo's motion. In this Letter, we demonstrate this
effect from simulated cosmological maps of the thermal Sunyaev Zel'dovich
effect and the cosmic infrared background. We find that, for a wide range of
halo masses and redshifts, oriented stacked profiles of these foregrounds show
significant, potentially detectable gradients aligned with the transverse
velocity of halos. The signal depends on the halo's mass and redshift, as well
as the physical properties of the cosmic web surrounding the halos. We show
that this signal is sufficiently prominent to be detected in future Cosmic
Microwave Background experiments, therefore offering a new window into the
study of cosmological structures. We argue that the dipolar morphological
structure of this signal, its orientation, as well as its overall large
amplitude, constitute a challenge for the detection of the transverse velocity
through the study of the moving lens effect for stacked halos.Comment: 8 pages, 4 figures, comments welcom
Constraints on isocurvature models from the WMAP first-year data
We investigate the constraints imposed by the first-year WMAP CMB data
extended to higher multipole by data from ACBAR, BOOMERANG, CBI and the VSA and
by the LSS data from the 2dF galaxy redshift survey on the possible amplitude
of primordial isocurvature modes. A flat universe with CDM and Lambda is
assumed, and the baryon, CDM (CI), and neutrino density (NID) and velocity
(NIV) isocurvature modes are considered. Constraints on the allowed
isocurvature contributions are established from the data for various
combinations of the adiabatic mode and one, two, and three isocurvature modes,
with intermode cross-correlations allowed. Since baryon and CDM isocurvature
are observationally virtually indistinguishable, these modes are not considered
separately. We find that when just a single isocurvature mode is added, the
present data allows an isocurvature fraction as large as 13+-6, 7+-4, and 13+-7
percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two
isocurvature modes plus the adiabatic mode and cross-correlations are allowed,
these percentages rise to 47+-16, 34+-12, and 44+-12 for the combinations
CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature
modes and cross-correlations are allowed, the admissible isocurvature fraction
rises to 57+-9 per cent. The sensitivity of the results to the choice of prior
probability distribution is examined.Comment: 20 pages, 24 figures. Submitted to PR
Boomerang returns unexpectedly
Experimental study of the anisotropy in the cosmic microwave background (CMB)
is gathering momentum. The eagerly awaited Boomerang results have lived up to
expectations. They provide convincing evidence in favor of the standard
paradigm: the Universe is close to flat and with primordial fluctuations which
are redolent of inflation. Further scrutiny reveals something even more
exciting however -- two hints that there may be some unforeseen physical
effects. Firstly the primary acoustic peak appears at slightly larger scales
than expected. Although this may be explicable through a combination of mundane
effects, we suggest it is also prudent to consider the possibility that the
Universe might be marginally closed. The other hint is provided by a second
peak which appears less prominent than expected. This may indicate one of a
number of possibilities, including increased damping length or tilted initial
conditions, but also breaking of coherence or features in the initial power
spectrum. Further data should test whether the current concordance model needs
only to be tweaked, or to be enhanced in some fundamental way.Comment: 11 pages, 3 figures, final version accepted by Ap
Evaluation of different plasmid DNA delivery system for immunization against HER2/neu in a transgenic murine model of mammary carcinoma
Studies of DNA vaccination against HER2/neu showed the effectiveness of immunization protocols in models of transplantable or spontaneous tumors; scarce information, however, has been provided to identify the procedure of DNA administration that more effectively contributes to the activation of immune system against spontaneously arising HER2/neu-positive tumors. We compared the effectiveness of different procedures of DNA vaccine delivery (intradermic injection (ID), gene gun (GG) delivery and intramuscular injection (IM) alone or with electroporation) in a murine transgenic model of mammary carcinoma overexpressing HER2/neu. We highlighted the role of DNA delivery system in the success of DNA vaccination showing that, among the analysed methods, intramuscular injection of the vaccine, particularly when associated to electroporation, elicits a better protection against HER2/neu spontaneous tumor development inducing antibody and cell-mediated immune responsiveness against HER2/neu and a ThI polarization of the immune response
Whole-Brain DTI Assessment of White Matter Damage in Children with Bilateral Cerebral Palsy: Evidence of Involvement beyond the Primary Target of the Anoxic Insult
BACKGROUND AND PURPOSE: Cerebral palsy is frequently associated with both motor and nonmotor symptoms. DTI can characterize the damage at the level of motor tracts but provides less consistent results in nonmotor areas. We used a standardized pipeline of analysis to describe and quantify the pattern of DTI white matter abnormalities of the whole brain in a group of children with chronic bilateral cerebral palsy and periventricular leukomalacia. We also explored potential correlations between DTI and clinical scale metrics. MATERIALS AND METHODS: Twenty-five patients (mean age, 11.8 years) and 25 healthy children (mean age, 11.8 years) were studied at 3T with a 2-mm isotropic DTI sequence. Differences between patients and controls were assessed both voxelwise and in ROIs obtained from an existing DTI atlas. Clinical metrics included the Gross Motor Function Classification System, the Manual Ability Classification System, and intelligence quotient. RESULTS: The voxel-level and ROI-level analyses demonstrated highly significant ( P CONCLUSIONS: We demonstrated the involvement of several motor and nonmotor areas in the chronic damage associated with periventricular leukomalacia and showed new correlations between motor skills and DTI metrics
CMB component separation by parameter estimation
We propose a solution to the CMB component separation problem based on
standard parameter estimation techniques. We assume a parametric spectral model
for each signal component, and fit the corresponding parameters pixel by pixel
in a two-stage process. First we fit for the full parameter set (e.g.,
component amplitudes and spectral indices) in low-resolution and high
signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each
parameter, and the associated uncertainty. The goodness-of-fit is evaluated by
a chi^2 statistic. Then we fix all non-linear parameters at their
low-resolution best-fit values, and solve analytically for high-resolution
component amplitude maps. This likelihood approach has many advantages: The
fitted model may be chosen freely, and the method is therefore completely
general; all assumptions are transparent; no restrictions on spatial variations
of foreground properties are imposed; the results may be rigorously monitored
by goodness-of-fit tests; and, most importantly, we obtain reliable error
estimates on all estimated quantities. We apply the method to simulated Planck
and six-year WMAP data based on realistic models, and show that separation at
the muK level is indeed possible in these cases. We also outline how the
foreground uncertainties may be rigorously propagated through to the CMB power
spectrum and cosmological parameters using a Gibbs sampling technique.Comment: 20 pages, 10 figures, submitted to ApJ. For a high-resolution
version, see http://www.astro.uio.no/~hke/docs/eriksen_et_al_fgfit.p
- …