470 research outputs found

    Promoting Bold Investment in Renewable Energy Research and Development

    Get PDF
    This thesis discusses the potential for private investment to fund ambitious renewable energy research and development to help mitigate climate change. I begin by discussing the threat of global warming and a brief history of renewable energy development in the United States. Next, I discuss existing avenues for private investment in renewable energy, potential methods of increasing corporate participation, and the belief that businesses must maximize only financial profits. Then I perform an in-depth case study of pension funds that have incorporated a social or environmental mission, existing environmentally focused mutual funds, and liquidated clean energy mutual funds. Finally, I compare the historical performance of the existing mutual funds to the liquidated to determine a profit threshold below which clean energy focused funds fail and discuss optimal investment strategies to foster bold renewable energy investment

    Restoration of Hypoglycemia Awareness After Islet Transplantation

    Get PDF
    OBJECTIVE—To determine the impact of islet transplantation (ITx) on hypoglycemia awareness in patients with unstable type 1 diabetes and its relation to islet function

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Successful nesting by 2 endangered Hawaiian waterbird species in a restored Indigenous wetland agroecosystem

    Get PDF
    The Hawaiian Stilt (Himantopus mexicanus knudseni) and Hawaiian Gallinule (Gallinula galeata sandvicensis) are federally endangered waterbirds endemic to the Hawaiian Islands. Both species are conservation-reliant; their population persistence is dependent on invasive predator control and removal of invasive plants that degrade habitat. We present observations of successful nesting by one Hawaiian Stilt pair and one Hawaiian Gallinule pair at a site managed within an adaptive Indigenous agroecological framework on the island of O‘ahu, Hawai‘i. The Hawaiian Stilt nest, found in February 2019, contained 4 eggs and produced 3 hatchlings, 2 of which were banded and monitored after hatching. The Hawaiian Gallinule nest, found in February 2020, contained 6 eggs and produced 5 hatchlings. Although no individuals were banded from this nest, 2 adults and 2 hatchlings were continuously observed in the nesting area after the eggs hatched. Lo‘i kalo Hawaiian wetland agroecosystems centered around the cultivation of kalo (taro; Colocasia esculenta), have the potential to expand Hawaiian waterbird habitat beyond state and federal protected areas. We are aware of unpublished accounts of Hawaiian waterbirds nesting in commercially farmed lo‘i kalo, but until now, there have been no previously published accounts of native waterbirds breeding in lo‘i kalo managed as Indigenous agroecosystems

    Ice giant magnetospheres

    Get PDF
    The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind-magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'
    corecore