1,229 research outputs found

    Infinite compressibility states in the Hierarchical Reference Theory of fluids. II. Numerical evidence

    Full text link
    Continuing our investigation into the Hierarchical Reference Theory of fluids for thermodynamic states of infinite isothermal compressibility kappa[T] we now turn to the available numerical evidence to elucidate the character of the partial differential equation: Of the three scenarios identified previously, only the assumption of the equations turning stiff when building up the divergence of kappa[T] allows for a satisfactory interpretation of the data. In addition to the asymptotic regime where the arguments of part I (cond-mat/0308467) directly apply, a similar mechanism is identified that gives rise to transient stiffness at intermediate cutoff for low enough temperature. Heuristic arguments point to a connection between the form of the Fourier transform of the perturbational part of the interaction potential and the cutoff where finite difference approximations of the differential equation cease to be applicable, and they highlight the rather special standing of the hard-core Yukawa potential as regards the severity of the computational difficulties.Comment: J. Stat. Phys., in press. Minor changes to match published versio

    A search for Galactic transients disguised as gamma-ray bursts

    Get PDF
    A significant fraction of cosmological gamma-ray bursts (GRBs) are characterised by a fast rise and exponential decay (FRED) temporal structure. This is not a distinctive feature of this class, since it is observed in many Galactic transients and is likely descriptive of a sudden release of energy followed by a diffusion process. Possible evidence has recently been reported by Tello et al. (2012) for a Galactic contamination in the sample of FRED GRBs discovered with Swift. We searched for possible Galactic intruders disguised as FRED GRBs in the Swift catalogue up to September 2014. We selected 181 FRED GRBs (2/3 with unknown redshift) and considered different subsamples. We tested the degree of isotropy through the dipole and the quadrupole moment distributions, both with reference to the Galaxy and in a coordinate-system-independent way, as well as with the two-point angular autocovariance function. In addition, we searched for possible indicators of a Galactic origin among the spectral and temporal properties of individual GRBs. We found marginal (~3 sigma) evidence for an excess of FREDs with unknown redshift towards the Galactic plane compared with what is expected for an isotropic distribution corrected for the non-uniform sky exposure. However, when we account for the observational bias against optical follow-up observations of low-Galactic latitude GRBs, the evidence for anisotropy decreases to ~2 sigma. In addition, we found no statistical evidence for different spectral or temporal properties from the bulk of cosmological GRBs. We found marginal evidence for the presence of a disguised Galactic population among Swift GRBs with unknown redshift. The estimated fraction is f=(19 +- 11)%, with an upper limit of 34% (90% confidence).Comment: 6 pages, 4 figures, accepted by A&

    Implementation of the Hierarchical Reference Theory for simple one-component fluids

    Full text link
    Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and thermodynamics, the Hierarchical Reference Theory is known to be successful even in the vicinity of the critical point and for sub-critical temperatures. We here present a software package independent of earlier programs for the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair potentials, restricting ourselves to hard sphere reference systems. Using the hard-core Yukawa potential with z=1.8/sigma for illustration, we discuss our implementation and the results it yields, paying special attention to the core condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio

    Competitive density waves in quasi-one-dimensional electron systems

    Get PDF
    We investigate the nature of the ground state of the one-dimensional t-J model coupled to adiabatic phonons by use of the Lanczos technique at quarter filling. Due to the interplay between electron-electron and electron-phonon interactions, the model undergoes instabilities toward the formation of lattice and charge modulations. Moderate on-site and intra-site electron-phonon couplings lead to a competition of different spin-Peierls and dimerized states. In the former case two electrons belong to the unit cell and we expect a paramagnetic band insulator state, while lattice dimerization leads to a Mott insulating state with quasi long range antiferromagnetic order. The zero temperature phase diagram is obtained as a function of intra-site and inter-site electron-phonon couplings, analytically in the J→0J\to 0 limit and numerically at finite J/t.Comment: 7 pages, 7 figures, to be published in Phys. Rev.

    Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group

    Full text link
    The Hierarchical Reference Theory (HRT) of fluids is a general framework for the description of phase transitions in microscopic models of classical and quantum statistical physics. The foundations of HRT are briefly reviewed in a self-consistent formulation which includes both the original sharp cut-off procedure and the smooth cut-off implementation, which has been recently investigated. The critical properties of HRT are summarized, together with the behavior of the theory at first order phase transitions. However, the emphasis of this presentation is on the close relationship between HRT and non perturbative renormalization group methods, as well as on recent generalizations of HRT to microscopic models of interest in soft matter and quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic

    Magneto-elastic effects and magnetization plateaus in two dimensional systems

    Get PDF
    We show the importance of both strong frustration and spin-lattice coupling for the stabilization of magnetization plateaus in translationally invariant two-dimensional systems. We consider a frustrated spin-1/2 Heisenberg model coupled to adiabatic phonons under an external magnetic field. At zero magnetization, simple structures with two or at most four spins per unit cell are stabilized, forming dimers or 2×22 \times 2 plaquettes, respectively. A much richer scenario is found in the case of magnetization m=1/2m=1/2, where larger unit cells are formed with non-trivial spin textures and an analogy with the corresponding classical Ising model is detectable. Specific predictions on lattice distortions and local spin values can be directly measured by X-rays and Nuclear Magnetic Resonance experiments.Comment: 4 pages and 4 figure

    Compton-thick AGN in the NuSTAR era II: A deep NuSTAR and XMM-Newton view of the candidate Compton thick AGN in NGC 1358

    Full text link
    We present the combined NuSTATR and XMM-Newton 0.6-79 keV spectral analysis of a Seyfert 2 galaxy, NGC 1358, which we selected as a candidate Compton thick (CT-) active galactic nucleus (AGN) on the basis of previous Swift/BAT and Chandra studies. According to our analysis, NGC 1358 is confirmed to be a CT-AGN using physical motivated models, at >3 σ\sigma confidence level. Our best-fit shows that the column density along the 'line-of-sight' of the obscuring material surrounding the accreting super-massive black hole is NH\rm _H = [1.96--2.80] ×\times 1024^{24} cm−2^{-2}. The high-quality data from NuSTAR gives the best constraints on the spectral shape above ∼\sim10 keV to date on NGC 1358. Moreover, by combining NuSTAR and XMM-Newton data, we find that the obscuring torus has a low covering factor (fcf_c <0.17), and the obscuring material is distributed in clumps, rather than uniformly. We also derive an estimate of NGC 1358's Eddington ratio, finding it to be λEdd\lambda_{\rm Edd} ∼\sim4.7−0.3+0.34.7_{-0.3}^{+0.3} ×\times 10−2^{-2}, which is in acceptable agreement with previous measurements. Finally, we find no evidence of short-term variability, over a ∼\sim100 ks time-span, in terms of both 'line-of-sight' column density and flux.Comment: 12 pages, 6 figure

    Heavily obscured AGN in the local Universe

    Full text link
    We present here a new powerful diagnostic plot to select heavily obscured AGN in the local universe by combining infrared (Spitzer, IRAS) and X-ray (XMM) information. On the basis of this plot, we selected a sample of X-ray obscured sources in the 2XMM catalogue and found seven newly discovered Compton-thick AGN candidates.Comment: 2 pages, 2 figures, To appear in refereed Proceedings of "X-ray Astronomy 2009: Present Status, Multi-Wavelength Approach and Future Perspectives", Bologna, Italy, September 7-11, 2009, AIP, eds. A. Comastri, M. Cappi, and L. Angelin
    • …
    corecore