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We show the importance of both strong frustration and spin-lattice coupling for the stabilization of magne-

tization plateaus in translationally invariant two-dimensional systems. We consider a frustrated spin-1/2

Heisenberg model coupled to adiabatic phonons under an external magnetic field. At zero magnetization,

simple structures with two or at most four spins per unit cell are stabilized, forming dimers or 232 plaquettes,

respectively. A much richer scenario is found in the case of magnetization m=1/2, where larger unit cells are

formed with nontrivial spin textures and an analogy with the corresponding classical Ising model is detectable.

Specific predictions on lattice distortions and local spin values can be directly measured by x rays and nuclear

magnetic resonance experiments.

DOI: 10.1103/PhysRevB.75.184444 PACS numberssd: 75.10.Jm, 71.27.1a, 74.20.Mn

I. INTRODUCTION

A magnetization plateau occurs when the magnetization

remains constant over a range Dh of applied magnetic fields.
The width of the plateau can be expressed in term of the

excitation spectrum Dh=EsM+1d−2EsMd+EsM−1d, where
EsMd is the total energy at fixed magnetization M smeasured
in units of gmBd. This, in turn, implies that the energy sper
sited as a function of the magnetization sper sited displays a
cusplike singularity in the thermodynamic limit. In general,

plateaus are absent in classical models with magnetic ground

states whenever the magnetization is not collinear with the

field.1 Instead, they identify particularly stable quantum

phases characterized by a spin gap.

Usually, gaps in the excitation spectrum directly reflect

the structure of the primitive cell of the lattice according to

the commensurability condition2

lSs1 − md = integer, s1d

where S is the magnitude of the spin, m the magnetization

per site in units of gmBS si.e., the average on-site spin com-
ponent parallel to the magnetic fieldd, and l the number of

spins in the primitive cell. According to Eq. s1d, magnetiza-
tion plateaus in models with a single spin-1/2 per unit cell

may occur only as a consequence of the spontaneous break-

ing of the translational symmetry, leading to an l-fold degen-

erate ground state. Although this relation has been rigorously

proved in one-dimensional s1Dd systems,2 it is believed to

have a much wider validity.3 Several analytical and numeri-

cal calculations in chains and ladders have definitively con-

firmed the presence of various magnetization plateaus at the

expected positions.4–6 Moreover, few important cases of pla-

teaus in higher dimensions are also known. The most rel-

evant example is given by the orthogonal dimer Heisenberg

model, which closely represents the structure of copper

planes in SrCu2sBO3d2.7 In this case, the theoretical predic-

tions have been confirmed by experimental evidence of mag-

netization plateaus at m=0, 1 /8, and 1/4.8 Moreover, also

the plateau at m=1/3 has been theoretically proposed9 and

experimentally found.10 Some evidence for a m=1/3 plateau

has been also proposed for the triangular lattice,11,12 while in

the square lattice, the m=0 properties of the J1-J2 model are

still debated. Indeed, although for J2 /J1,1/2 the ground

state is believed to be disordered, the existence of a finite

triplet gap is much less clear,13,14 casting some doubt on the

possibility to stabilize a magnetization plateau for m=0.

The interest in the J1-J2 model has grown due to the re-

cent discovery of two materials well described by a two-

dimensional s2Dd frustrated quantum antiferromagnet, i.e.,

Li2VOSiO4 and VOMoO4.
15,16 Although the experimental

magnetization curve of these compounds has not yet been

considered, the magnetization properties of the J1-J2 model

have been recently examined by using exact diagonalization

calculations, leading to some evidence in favor of a plateau

at m=1/2.17 This outcome has been interpreted as a conse-

quence of the emergence of a 232 supercell. According to

this scenario, inside each cell the magnetic moments acquire

a preferential orientation along the direction of the magnetic

field, leading to a configuration with three up and one down

spin.17 Unfortunately, the presence of such a half-

magnetization plateau is limited to a very narrow region

close to J2 /J1,1/2, revealing the difficulty of stabilizing

such a state in the pure spin model without other degrees of

freedom. In this respect, the spin-lattice coupling represents

one of the most relevant physical mechanisms to enhance the

stability of phases breaking some of the lattice symmetries,

making it easier to identify these states in numerical studies

of small lattices. From general arguments, the superexchange

couplings are ultimately generated by the virtual hopping of

electrons through neighboring sites and strongly depend

upon lattice distortions.18 The role of the spin-lattice cou-

pling in frustrated spin systems has been extensively consid-

ered in the absence of an external magnetic field for both 1D

sRefs. 19 and 20d and 2D systems.21 More recently, the im-

portance of lattice distortions for stabilizing magnetization

plateaus has been discussed in a simple 1D spin model,22 and

in a classical Heisenberg model on a pyrochlore lattice.23

In this work we investigate the possible occurrence of

magnetization plateaus in the frustrated spin-1/2 Heisenberg

model on the square lattice by the numerical analysis of the

periodicity of the distortion pattern induced by spin-lattice

coupling. The paper is organized as follows. In Sec. II, we
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introduce the model, in Sec. III we present our results, and in

Sec. IV we draw the conclusions.

II. MAGNETOELASTIC EFFECTS

AND MAGNETIZATION PLATEAUS

The model is defined by

H =
1

2
o
i,j

JsdijdSi · S j +
1

2
o
i,j

Ksdij
0 d

2
S idri − dr ji

dij
0 D2, s2d

where Si is the spin-1 /2 operator at site i, dri is the displace-

ment of atom i, assumed to be in the plane, and dij; iri
−r j

i is the distance between atoms i and j. The sum runs

over nearest fi.e., J1=Js1dg, second fi.e., J2=JsÎ2dg, and
third fi.e., J3=Js2dg neighbor sites on a 2D square lattice,

while dij
0 = iRi

0−R j
0i is the distance between sites i and j in

the undistorted lattice. Energy units are fixed by the choice

J1=1. In order to limit the number of parameters, only the

elastic constant between nearest-neighbor sites fK=Ks1dg
has been included. However, we checked that our conclu-

sions are not qualitatively affected by considering further

neighbor elastic constants. In transition metal compounds,

the super-exchange theory combined with empirical depen-

dence of hopping integrals on distance18 leads to exchange

integrals that vary as the inverse of the distance to a given

power am sm=1,2 ,3d. For small displacements we can write

Jsdijd = Jsdij
0 dSdij0

dij
Dam

. Jsdij
0 dS1 − am

ddij

dij
0 D , s3d

with ddij=dij−dij
0 ,sRi

0−R j
0d · sdri−dr jd /dij

0 . Since the

Hamiltonian is invariant under the rescaling am=lam, K

=l2K and dri=dri /l, K can be fixed. To study this system,

we adopt the Lanczos diagonalization technique in finite

clusters with periodic boundary conditions, which allows for

an unbiased determination of the lowest-energy configuration

at fixed distortion pattern. In order to determine the optimal

configuration of lattice displacements dri we use an iterative

procedure.21 Since the local displacement of each spin from

its equilibrium position is considered, we are able to describe

all kinds of distortions, including the dilation and the shrink-

ing of the lattice. We performed systematic calculations at

different frustrations and lattice couplings in a 434 cluster

at m=0 and m=1/2, i.e., at the magnetization values where

plateaus are commonly expected in this geometry.

III. RESULTS

A. Zero magnetization

At vanishing magnetization, the classical J1-J2-J3 model

on a rigid lattice shows four magnetically ordered states:

Néel with momentum sp ,pd, collinear with momenta sp ,0d,
and s0,pd and two helicoidal phases with momenta sq ,qd
and sq ,pd, sp ,qd, where q varies continuously with the pa-

rameters in the Hamiltonian.24–26 Quantum fluctuations, en-

hanced by the competing antiferromagnetic couplings, can

drive the system away from these semiclassical behaviors

and stabilize unconventional quantum phases without long-

range magnetic order, which may eventually display a mag-

netization plateau. At J3=0, the magnetically disordered re-

gime is widely believed to occur around the maximally

frustrated point si.e., J2=1/2d, while at J2=0 a nonclassical

phase appears between the Néel and the spiral state sq ,qd
close to J3,1/2. However, in both cases, the nature of the

disordered phases is still controversial and several proposals

appear in the literature:27 Valence bond crystal sVBCd co-

lumnar states28,29 or spin liquids.13,30 Very recently a singlet

state with plaquette order has been claimed to be stabilized

around the line J2+J3.J1 /2 with J3.0.31

When the spin-lattice coupling is taken into account, we

expect that each of the previous orderings would lead to a

characteristic distortion pattern which can be easily identi-

fied. In Fig. 1 we present the results for the ground-state

phase diagram obtained by Lanczos diagonalizations of the

Hamiltonian s2d in the J3-a plane for am=a sfor m=1,2 ,3d
and K=10. Two values of J2=0 and 1/2, representative of

the weak and strong frustration regime, will be considered.

Among all possible lattice deformations, only four are

stable at m=0, depending on the values of the parameters

ssee Fig. 1d. In all the states we found by numerical minimi-
zation of the ground state energy in the 434 cluster, the

local magnetization kSi
zl is uniform throughout the lattice.

The four phases can be classified according to the different

lattice distortions. sid The square lattice with uniform bond

lengths: All spatial symmetries are preserved and the pres-

ence of the spin-phonon coupling a just leads to a renormal-

ization of the bond lengths. The absence of distortions for

low values of J3 is consistent with a magnetic ground state

displaying Néel order at J2=0. siid The dimerized lattice with
two different bonds in one direction and one bond in the

other, for intermediate values of J3 and for both J2=0 and

1/2. This phase breaks both p /2 rotation and the transla-

tional symmetry along one direction and the ground state is

fourfold degenerate. In this case, the commensurability con-

dition s1d is satisfied leading to a spin gap and a magnetiza-
tion plateau. siiid The square-plaquette phase, with dimeriza-
tion in both directions for larger J3. In this state, rotational

symmetry is preserved since a 232 primitive cell is stabi-

lized. Also in this case the ground state is fourfold degener-

ate and the spin gap is finite. In any case, the plausible oc-

currence of spiral magnetic ordering with incommensurate q

FIG. 1. Ground-state phase diagram of the J1-J2-J3 model for

m=0, K=10, and J2=0 sad or J2=0.5 sbd. See text for the precise
description of the various phases.
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at large J3 suggests to be cautious with the numerical results

in small lattices for J3*0.6. For J2=1/2, we also found sivd
the rectangular phase with different bond lengths in the x and

y directions at small enough J3. This phase breaks the p /2

rotational symmetry but is translationally invariant, as ex-

pected when collinear magnetic ordering is present, leading

to a twofold degenerate ground state: A finite-temperature

phase transition marks the onset of collinear order.32 When-

ever the spatial symmetry breaking persists in the absence of

phonon coupling, the threshold value of a=0 which defines

the lower transition line is expected to collapse to zero as the

system size is increased.

In order to better understand the physical properties of the

two intermediate phases siid and siiid we have analyzed the

energy spectrum both in the 434 and in the 636 rigid

lattice. Some evidence of translational symmetry breaking

emerges from the quasi degeneracy of the states with mo-

menta s0,0d, s0,pd, and sp ,0d. However, the ordering of

energy levels on these small systems is not able to discrimi-

nate between a columnar dimer or a plaquette state, because

both the d-wave, zero momentum state, and the sp ,pd
s-wave singlet have comparable energies in these clusters.

B. One-half magnetization

Let us now move to the more interesting case of m=1/2.

The phase diagram is shown in Fig. 2. At small J3, a semi-

classical scenario is consistent with both the shape of the

lattice and the observed uniform local magnetization, i.e.,

kSi
zl=1/4. Indeed, an applied magnetic field cants the spins

which preserve a magnetic ordering in the plane orthogonal

to the field direction. The numerical evaluation of the spin-

spin correlation function Sskd, by means of Lanczos diago-

nalizations on the 434 and 636 rigid cluster is fully com-

patible with the semiclassical scenario both at small and

large J2, namely, weak correlations along the magnetic field

and marked peaks of the structure factor in the orthogonal

plane, see Fig. 3. The analytical evaluation of the suscepti-

bility via spin-wave theory shows that, for weak phonon cou-

pling, the lattice undergoes global deformations but bond

lengths and local magnetizations remain uniform throughout

the lattice, thereby inhibiting magnetization plateaus.

By increasing the third neighbor coupling J3, in addition

to the same lattice deformations already found at zero mag-

netization, other two phases emerge ssee Fig. 2d: svd For J2
=0.5 and a large enough, the “trapezoidal” phase character-

ized by a 432 primitive cell made of two aligned congruent

isosceles trapezia, rotated by p one respect to the other ssee
Fig. 4d. In this case, the lattice dilates in one direction and

exhibits three different bond lengths, still preserving a rect-

angular shape. The local magnetization is not uniform but it

acquires two different values: One is close to zero, while the

other approaches the limiting value S=1/2 ssee Fig. 5d. svid
The “classical Ising” phase characterized by a 434 unitary

cell composed of four identical scalene trapezia which can be

obtained one from the other by means of suitable rotations

ssee Fig. 4d. The lattice is not squeezed in any direction, but
develops a complex bond pattern with eight different bond

lengths and three values of the local magnetization: Two

FIG. 2. The same as in Fig. 1 but for m=1/2.

FIG. 3. Magnetic structure factor at m=1/2

along a closed path in the Brillouin zone fG
= s0,0d, M= s0,pd, and X= sp ,pdg for the J1-J2
Heisenberg model sJ3=0d on a 434 sempty dotsd
and a 636 sfull dotsd rigid lattice along the mag-
netic field sleft panelsd and in the orthogonal

plane sright panelsd for J2=0.2 in the upper pan-
els and J2=1.1 in the lower ones.
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positive and one negative, with modulus close to S=1/2 ssee
Fig. 5d. This rather rich texture of local magnetization kSi

zl is
stabilized for non-zero third neighbors coupling and can be
directly tested by nuclear magnetic resonance sNMRd experi-
ments.

Interestingly, these results admit a simple interpretation
on the basis of a purely classical Ising model. Indeed, we
checked that the complex topology of phase svid is shared by
a 2D Ising model with antiferromagnetic interactions up to

third neighbors and spin-lattice coupling. A numerical study

of this model with J2,0.5 and J3,0.4 has been carried out

both in the 434 and in the 838 lattices with similar results:

The spin patterns are characterized by the requirement of

minimizing the classical sIsingd contribution to the ground

state energy in the undistorted lattice

E0 =
1

2
o
i,j

Jsdij
0 dSi

zS j
z. s4d

For the chosen parameters, this amounts to place down spins

so to avoid first and third neighbors, while allowing a single

second neighbor down spin, see Fig. 4. This “topological”

constraint on the spin configuration does not uniquely define

the spin pattern: The resulting degeneracy is lifted by the

elastic contribution, leading to tiny energy differences.33

Also the distortion pattern of the classical model is very

similar to the one obtained in the quantum model ssee Fig.
4d, suggesting that quantum fluctuations play a minor role

and finite size effects are not so relevant. It is worth noting

that once the magnetic energy gain overcomes the elastic

energy, the transition lines among the different phases de-

pend only weakly on the spin-phonon coupling a. This sug-
gests that, in the thermodynamic limit, the distorted phases

might remain stable up to arbitrarily small a. In such a case,
the m=1/2 magnetization plateau would be present, in the

J1-J2-J3 model, independently of the strength of spin-lattice

coupling.

In order to clarify the distortion patterns obtained by a

purely numerical analysis, it is instructive to discuss in more

detail the case of the classical Ising model, where several

results can be obtained analytically. Although the analysis

may be performed in the general frustrated case, the physics

emerges more clearly in the simple nearest neighbor Ising

model coupled to classical phonons: The model is defined by

the Hamiltonian s2d where only the z component of the spin
operators is retained and J2=J3=K2=K3=0. We denote Si

z

=1/2−ni, being ni the local density operator sni=0 for a spin
up and ni=1 for a spin downd, and m=1−2n, being n the

average density. Let us fix an arbitrary spin configuration Si
z

in the lattice. The total energy, as a function of the distortions

dri, may be minimized analytically and is given by the sum

of three terms with different physical meaning: The magnetic

contribution in the absence of distortions

E0 = −
J1N

2
s1 − 2md + J1o

ki,jl
nin j , s5d

the term expressing the energy gain due to dilation

E1 = −
J1
2N

16K
s1 − 2md2, s6d

and the highly nontrivial distortion energy

E2 = −
J1
2

4K
o
qÞ0

unqu
2fsqd , s7d

where N is the number of sites, nq is the Fourier transform of

ni, and

fsqd =
sin2qx + sin

2qy

2 − cos qx − cos qy
. s8d

Remarkably, these expressions may be read off as an effec-

tive Hamiltonian for the spin configuration itself: In terms of

the occupation numbers ni this effective Hamiltonian is just

Heff =
1

2
o
i,j

vij
eff
nin j + const s9d

with effective potential given by

FIG. 4. Distortion pattern of the J1-J2-J3 Heisenberg model on

the 434 lattice at m=1/2 in the “trapezoidal” phase at J2=0.5,

J3=0.2, and a=3.5 sad and in the “classical Ising” phase at J2
=0.5, J3=0.4, and a=Î10 sbd. Distortion pattern of the Ising model
on the 838 cluster at J2=0.5, J3=0.4, and a=Î10 scd. Stars mean
kSi

zl,0, while empty and full dots indicate positive and negative

local magnetization close or equal to the maximal value 1/2,

respectively.

FIG. 5. Behavior of local magnetization kSi
zl as a function of J3

at m=1/2 and a=Î10 for J2=0 supper paneld and J2=0.5 slower
paneld.
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vij
eff = 5

J1 if dij
0 = 1,

−
J1
2

4K
fsdij

0 d elsewhere,
s10d

and fsrd is the inverse Fourier transform of fsqd given in Eq.
s8d. For K≫J1 the leading contribution in the effective po-

tential is the direct nearest neighbor repulsion which selects

all the configurations with no pair of nearest neighbor down

spins. The contribution to the effective interaction due to

lattice distortions is instead attractive for next-nearest-

neighbor sites and decays very quickly as a function of the

distance. The most favored configuration is characterized by

spins down aligned along the diagonal. In particular, for m

=1/2 this leads to the configuration shown in Fig. 6 and to a

distortion pattern

dxi = −
J1

8K
sin

p

2
sxi − yid ,

dyi =
J1

8K
sin

p

2
sxi − yid

which agrees with the numerical findings. Note that in this

classical model, lattice distortions appear as soon as phonon

coupling is switched on. Instead, no dilation is present due to

the vanishing of the contribution E1 for m=1/2.

Finally, when J3=0 and J2 is large enough si.e., J2*0.1d,
the lowest-energy configuration satisfies the condition of or-

dering the down spins so to avoid nearest and next-nearest

neighbors ssee Fig. 7d. This is the pattern one would also

have expected if a magnetization plateau at m=1/2 had been

present in the J1-J2 Heisenberg model. However, we stress

that quantum fluctuations destabilize this classical picture

which appears to require the presence of spin anisotropies in

the model.

IV. SUMMARY AND CONCLUSIONS

In summary, we showed that magnetization plateaus can

be stabilized in the square lattice J1-J2-J3 antiferromagnetic

Heisenberg model in the presence of spin-phonon coupling.

Third-neighbor coupling is an essential ingredient for the

appearance of plateaus both at zero and one-half magnetiza-

tion. While at m=0 the lattice dimerizes as expected on the

basis of a VBC phase, at m=1/2 a novel and complex dis-

tortion pattern characterizes the broken symmetry state. This

phase can be faithfully interpreted in terms of a frustrated

Ising model coupled to the lattice and appears as a genuine

result not much affected by the finite size of the cluster we

analyzed. The emerging scenario is considerably richer than

predicted in a previous study of the J1-J2 model on a rigid

lattice,17 and the on-site magnetization displays a distinctive

pattern which may be measured by NMR experiments in

strongly frustrated 2D magnetic materials, such as

Li2VOSiO4 or VOMoO4.
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