6,682 research outputs found

    Proximity sensors provide an accurate alternative for measuring maternal pedigree of lambs in Australian sheep flocks under commercial conditions

    Get PDF
    Context: Proximity sensors were used recently to determine the maternal pedigree of lambs on a small plot with high accuracy. If this accuracy is maintained under commercial grazing conditions, this method could be a useful alternative to improving genetic gain in sheep, including reproduction traits. Aims: To investigate using proximity sensors to determine the maternal pedigree of lambs and to define the level of interactions required to determine maternal pedigree confidently irrespective of differences in ewe age, lamb age, birth type, paddock size, flock size or stocking rate under commercial grazing conditions. Methods: We compared maternal pedigree determined using the proximity sensors to DNA profiling (n = 10 flocks) and lambing rounds (n = 16 flocks). Ewes (n = 7315) and lambs (n = 8058) were fitted with proximity sensors under normal grazing conditions for each property for 1–3 days. Flocks varied in ewe age (adults, hoggets and ewe lambs), lamb age (up to 100 days old, except for 1 flock), birth type (singles, multiples), paddock size (0.25–320 ha), flock size (37–420 lambs) and stocking rate (2–100 dry sheep equivalents/ha, except for 1 flock). Key results: An interaction ratio of >2 was required for a confident ewe–lamb match (ewe with the most interactions compared with the ewe with the second-most interactions for each lamb). Using this criterion, the average success of proximity sensors at matching a lamb to a ewe was 95% and the sensors were 97% accurate when compared with the pedigree results from lambing rounds or DNA. For lambs matched successfully, over 90% of this success was achieved in the first 7 h and over 99% in the first 20 h. While the success rate of matching a lamb to a ewe was not influenced significantly by ewe age, birth type, paddock size, flock size or stocking rate, the time to achieve sensor success was significantly quicker for singles than for twins and sensor accuracy was significantly higher for smaller paddocks with higher stocking rates. Conclusions: Our results showed that proximity sensors can establish maternal pedigree effectively and accurately across a range of conditions experienced on commercial properties. Implications: Private industry can now develop more cost-effective sensor technologies with greater confidence that will enhance recording of maternal pedigree and, hence, the rate of genetic gain across the sheep industry

    Growth pattern to the end of the mating period influences the reproductive performance of Merino ewe lambs mated at 7 to 8 months of age

    Get PDF
    The reproductive performance of Merino ewe lambs is highly variable and generally poor in comparison to older ewes. In this study, we determined the impacts of growth pattern to the end of the mating period and sire genetics on the reproductive performance of Merino ewe lambs. Five hundred ewe lambs with full pedigree records were managed under commercial conditions from weaning and weighed 43.5 kg at the start of the mating period with an average age of 224 days. The ewe lambs were offered a moderate or high feed allowance to achieve target growth rates of 100 or 200 g/day during a 46-day mating period. They were then recombined and scanned for pregnancy status 60 days after the mating period. At the individual animal level, a 5 kg greater live weight at the start of the mating period increased reproductive rate (foetuses per 100 ewes joined) by about 20% (P < 0.001). Regardless of their live weight at the start of the mating period, gaining an extra 100 g/day of live weight during the mating period further increased their reproductive rate by about 20% (P < 0.001). Ewe lambs from sires with higher Australian Sheep Breeding Values for fat measured post-weaning achieved a higher fertility (P < 0.05) and reproductive rate (P < 0.01) regardless of feed allowance treatment. The effects of sire fatness was significant even when the sire breeding values for live weight measured post-weaning were included in the model. The effects of managing growth pattern and sire genetics were additive, so improving the reproductive performance of Merino ewe lambs mated at 7 to 8 months of age requires improving their feed allowance and rate of live weight gain until the end of the mating period and using sires with higher breeding values for fatness

    An electromagnetic shashlik calorimeter with longitudinal segmentation

    Get PDF
    A novel technique for longitudinal segmentation of shashlik calorimeters has been tested in the CERN West Area beam facility. A 25 tower very fine samplings e.m. calorimeter has been built with vacuum photodiodes inserted in the first 8 radiation lengths to sample the initial development of the shower. Results concerning energy resolution, impact point reconstruction and electron/pion separation are reported.Comment: 13 pages, 12 figure

    The running of the electromagnetic coupling alpha in small-angle Bhabha scattering

    Full text link
    A method to determine the running of alpha from a measurement of small-angle Bhabha scattering is proposed and worked out. The method is suited to high statistics experiments at e+e- colliders, which are equipped with luminometers in the appropriate angular region. A new simulation code predicting small-angle Bhabha scattering is also presentedComment: 15 pages, 3 Postscript figure

    Prolonged decrease in heart rate variability after elective hip arthroplasty

    Get PDF
    The pattern of postoperative heart rate variability may provide insight into the response of the autonomic nervous system to anaesthesia and surgery. We have obtained spectral (fast Fourier transform) and non-spectral indices of heart rate variability from electrocardiographic recordings, sampled during continuous perioperative Holter monitoring in 15 otherwise healthy patients with an uncomplicated postoperative course, undergoing elective hip arthroplasty with either spinal or general anaesthesia. In both groups, total spectral energy (0.01-1 Hz), low-frequency spectral energy (0.01-0.15 Hz) and high-frequency spectral energy (0.15-0.40 Hz) decreased after surgery to 32% (95% confidence interval (Cl) 10.5; P <0.01), 29% (95% Cl 12.5; P <0.07; and 33% (95% Cl 12.5; P <0.01) of their preoperative values, respectively, and these indices remained suppressed for up to 5 days. Non-spectral indices decreased to a similar extent. These findings indicate a substantial and prolonged postoperative decrease in both parasympathetic and sympathetic influence on the sinus nod

    PLXNA1 and PLXNA3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons

    Get PDF
    Gonadotropin-releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary-gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human orthologue of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency

    Plxna1 and Plxna3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons

    Get PDF
    The gonadotropin releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human ortholog of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency

    Learning high-order interactions for polygenic risk prediction

    Get PDF
    Within the framework of precision medicine, the stratification of individual genetic susceptibility based on inherited DNA variation has paramount relevance. However, one of the most relevant pitfalls of traditional Polygenic Risk Scores (PRS) approaches is their inability to model complex high-order non-linear SNP-SNP interactions and their effect on the phenotype (e.g. epistasis). Indeed, they incur in a computational challenge as the number of possible interactions grows exponentially with the number of SNPs considered, affecting the statistical reliability of the model parameters as well. In this work, we address this issue by proposing a novel PRS approach, called High-order Interactions-aware Polygenic Risk Score (hiPRS), that incorporates high-order interactions in modeling polygenic risk. The latter combines an interaction search routine based on frequent itemsets mining and a novel interaction selection algorithm based on Mutual Information, to construct a simple and interpretable weighted model of user-specified dimensionality that can predict a given binary phenotype. Compared to traditional PRSs methods, hiPRS does not rely on GWAS summary statistics nor any external information. Moreover, hiPRS differs from Machine Learning-based approaches that can include complex interactions in that it provides a readable and interpretable model and it is able to control overfitting, even on small samples. In the present work we demonstrate through a comprehensive simulation study the superior performance of hiPRS w.r.t. state of the art methods, both in terms of scoring performance and interpretability of the resulting model. We also test hiPRS against small sample size, class imbalance and the presence of noise, showcasing its robustness to extreme experimental settings. Finally, we apply hiPRS to a case study on real data from DACHS cohort, defining an interaction-aware scoring model to predict mortality of stage II-III Colon-Rectal Cancer patients treated with oxaliplatin

    Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    Get PDF
    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review
    • …
    corecore