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Abstract

Within the framework of precision medicine, the stratification of individual genetic suscepti-

bility based on inherited DNA variation has paramount relevance. However, one of the most

relevant pitfalls of traditional Polygenic Risk Scores (PRS) approaches is their inability to

model complex high-order non-linear SNP-SNP interactions and their effect on the pheno-

type (e.g. epistasis). Indeed, they incur in a computational challenge as the number of possi-

ble interactions grows exponentially with the number of SNPs considered, affecting the

statistical reliability of the model parameters as well. In this work, we address this issue by

proposing a novel PRS approach, called High-order Interactions-aware Polygenic Risk

Score (hiPRS), that incorporates high-order interactions in modeling polygenic risk. The lat-

ter combines an interaction search routine based on frequent itemsets mining and a novel

interaction selection algorithm based on Mutual Information, to construct a simple and inter-

pretable weighted model of user-specified dimensionality that can predict a given binary

phenotype. Compared to traditional PRSs methods, hiPRS does not rely on GWAS sum-

mary statistics nor any external information. Moreover, hiPRS differs from Machine Learn-

ing-based approaches that can include complex interactions in that it provides a readable

and interpretable model and it is able to control overfitting, even on small samples. In the

present work we demonstrate through a comprehensive simulation study the superior per-

formance of hiPRS w.r.t. state of the art methods, both in terms of scoring performance and

interpretability of the resulting model. We also test hiPRS against small sample size, class

imbalance and the presence of noise, showcasing its robustness to extreme experimental

settings. Finally, we apply hiPRS to a case study on real data from DACHS cohort, defining

an interaction-aware scoring model to predict mortality of stage II-III Colon-Rectal Cancer

patients treated with oxaliplatin.
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Introduction

Within the framework of precision medicine, it is becoming more and more important to

stratify individual genetic susceptibility based on inherited DNA variation, an approach that

progressed together with the latest advances in human genetics [1]. A substantial interest in

leveraging the massive amount of genome-wide data now available has emerged, with the pur-

pose of maximizing the predictive power of risk prediction models by incorporating the effect

of Single Nucleotide Polymorphisms (SNPs) on the outcome [2]. Accurate genomic risk pre-

diction has two great potential aims: to prospectively identify individuals at increased risk of

disease, thus informing early interventions, and to aid diagnosis for diseases where current

diagnostic approaches are imperfect [3].

One of the most traditional approaches to model genetic risk is the Polygenic Risk Score

(PRS). PRS exploit a fixed model approach to sum the contribution of a set of risk alleles to a

specific complex disease [4]. Calculating PRS is a common practice because of its simplicity, its

computational efficiency, and the straightforward interpretability of the model itself. Indeed,

while polygenic scores are used to predict phenotypes, there are other interests beyond fore-

casting. For instance, model interpretability is often key for research purposes such as the dis-

covery or validation of SNPs’ role in disease risk. The schema in Fig 1 gives an overview on the

strenghts and weaknesses of the most common PRS approaches in the literature.

Standard weighted PRS estimation relies on Genome-Wide Association Study (GWAS)

summary statistics obtained on one or more discovery cohorts modeling the independent

Fig 1. Alternative approaches to polygenic risk scoring vs hiPRS. Strengths (first row) and Weaknesses (second row) of three main categories of PRS

methods discussed in the Introduction. The green tick signals that the given point of strength applies to hiPRS as well. The blue arrow signals a point of

weaknesses that hiPRS algorithm does not suffer, or some aspect that the algorithm was specifically designed to solve.

https://doi.org/10.1371/journal.pone.0281618.g001
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effect of individual SNPs on the outcome. These PRSs (cf. Fig 1, first column, GWAS-based

PRSs) exploit SNP-specific odds ratios or effect sizes to weight the contribution of the risk

alleles on the disease risk or outcome [5, 6]. The set of SNPs to be included in this estimation

may of course affect the score’s predictive power significantly. Some approaches include all

SNPs, with the risk of incorporating useless or redundant information, while others retain a

subset of SNPs based on predefined criteria (e.g., those passing an arbitrary p-value threshold

in the GWAS results [5]).

Despite their wide adoption and appreciated simplicity and interpretability, the perfor-

mance and reliability of traditional PRSs have been largely discussed and several methodologi-

cal concerns have been raised (see, e.g., [7] and references therein) as the approach presents

some evident limitations.

In particular, (i) the GWAS studies exploited for weights estimation are oftentimes under-

powered by multiple independent testing and their effect sizes overestimated because of

winners’ curse and biases [8–11]. Additionally, (ii) GWAS effect weights are traditionally com-

puted considering the effect of single SNPs on the phenotype. By doing so, they do not account

for the complex and nonlinear interactions between alleles in the genotype and their role in

determining the phenotype, or the epistasis effect [4, 12–15]. Essentially, epistasis refers to

departure from independence (or additivity, from a statistical point of view) of the effects of

multiple loci in the way that they combine to cause disease [16]. In other words, interaction

effects exist between loci, and their presence was reported to make major contributions to phe-

notypes [12, 13, 15, 17–20]. However, including SNP-SNP interactions in GWAS and risk

scoring models is computationally challenging due to the high dimensions involved: in fact,

the number of possible interactions grows exponentially with the number of SNPs considered.

Additionally, this also increases dramatically the amount of independent tests to be carried

out, thus strongly affecting their reliability. The authors in [21] attempted the inclusion of

SNP-SNP interactions by filtering those that where relevant accordingly to some imposed bio-

logical criteria, but only managed to consider up to second-order interactions. Other method-

ological concerns of GWAS-based approaches are the fact that (iii) GWAS weights ignore the

mediating role of clinical covariates when estimating SNPs effect on complex diseases [7], and

that (iv) those models incorporate strict assumptions, e.g., they include additive and indepen-

dent predictor effects, and assume that observations are uncorrelated [4, 14, 22]. These

assumptions do not necessarily hold true when modeling complex polygenic diseases. For

instance, Linkage Disequilibrium, i.e., the non-random association of alleles at two or more

loci in a population [4], statistically translates into strong correlation between predictors. To

account for LD some methods were developed to optimize SNPs reweighting (LD pruning and

p-value thresholding, LDpred [23], and others).

Other well-recognized solutions to polygenic risk scoring discard GWAS weights and

directly take genotype data as input, including various forms of penalization to restrict the

pool of predictors (cf. Fig 1, Penalized PRSs). These include genomic BLUP [24], shrinkage

methods (e.g. LASSO) or Generalized Linear Mixed Models (GLMMs). However, all these

methods share with the most traditional PRSs the assumption of additive effect of single SNPs

on the outcome, and may incur in the curse of dimensionality when trying to include all

potential interaction terms, with the risk of overestimating effect sizes and obtaining unreliable

models. This is particularly true if modeling high-order interactions. Nevertheless, these com-

plex interactions were found useful in describing genotype-phenotype relationships for com-

plex traits and common diseases both in humans and model organisms [25–29], highlighting

the need for novel approaches able to account for high-order interactions.

In this respect, great attention has been recently devoted to polygenic risk prediction via

Machine Learning (ML) algorithms (Fig 1, Machine Learning). These algorithms employ
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multivariate, non-parametric methods that robustly recognize patterns from non-normally

distributed and strongly correlated data [15, 20, 22]. Moreover, these methods are naturally

capable of modeling highly interactive complex data structures, making them powerful tools

for complex disease prediction [15, 20, 22]. However, most ML algorithms, s.a. Random For-

ests (RFs), Support Vector Machines (SVMs) or Neural Networks (NNs), demonstrate great

predictive power but lack in model interpretability, leaving researchers with no information

on the role and structure of the complex interactions influencing the phenotype prediction.

Moreover, these algorithms require a lot of training samples to avoid overfitting, but the avail-

able cohorts in real world research settings are oftentimes quite small.

In this work, we aim at addressing polygenic risk prediction proposing a novel PRS

approach, called High-order Interactions-aware Polygenic Risk Score (hiPRS), whose most

remarkable feature is the capability of robustly and reliably incorporating high-order interac-

tions in modeling polygenic risk, while constructing a simple and interpretable model.

In brief (cf. Fig 2), hiPRS treats genotype-level data, and starts with a user pre-defined list of

SNPs of interest. The algorithm exploits Frequent Itemset Mining (FIM) routines to build a

list of candidate interactions of any desired order. This is achieved by scanning the observa-

tions in the positive class only, and by retaining those terms that have an empirical frequency

above a given threshold δ. These candidates are subsequently ranked according to their rela-

tionship to the outcome in terms of Mutual Information (MI). From there, we select a

Fig 2. hiPRS algorithm process flow. (A) Input data is a list of genotype-level SNPs. (B) Focusing on the positive class only, the algorithm exploits FIM

(apriori algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given

threshold δ. This leads to a filtered set of terms in the form of sequences of pairs of SNP and associated categorical level (i.e., allele frequency in this

example). The sequences can include from a single SNP-allele pair up to a maximum number of pairs defined by the user (lmax). (C) The whole training

data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence i is

observed in j-th patient genotype, 0 otherwise). From this dataset we can compute the MI between each interaction and the outcome and (D) obtain a

ranked list (Iδ) based on this metric. (E) Starting from the interaction at the top of Iδ, hiPRS constructs IK, selecting K (where K is user-specified) terms

through the greedy optimization of the ratio between MI (relevance) and a suitable measure of similarity for interactions (redundancy) (cf. Algorithm 1,

Materials and methods). This leads to a set of predictive, yet diverse, interactions that (F) we use to define the score weighting their contribution by

fitting a LR model and retaining the corresponding β coefficients.

https://doi.org/10.1371/journal.pone.0281618.g002
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restricted pool of K interactions to include in the final PRS, where K is user-specified. To this

end, hiPRS incorporates a novel interaction selection algorithm inspired by the minimum

Redundancy Maximum Relevance (mRMR) literature. More precisely, the algorithm selects K
terms through the greedy optimization of the ratio between MI (relevance) and a suitable mea-

sure of similarity for interactions (redundancy). This leads to a set of predictive, yet diverse,

interactions that we use to define the score. In the end, the latter is built by weighting the con-

tribution of each interaction term accordingly to the weights obtained when fitting a Logistic

Regression (LR) model.

In general, to keep the interaction search computationally feasible, the algorithm has to

start from a limited set of SNPs of interest. If a large number of SNPs is available, a preliminary

feature selection may be desirable. The latter can be based on GWAS—with all the aforemen-

tioned limitations -, on biological rationale (s.a. [30]) or on more sophisticated multivariate

methods accounting for interactions [31, 32]. This sort of prior selection is typical of validation

studies [29, 33], and it is grounded on the idea that part of the missing variability can be later

recovered when interaction effects are included, possibly bringing to novel discoveries in

genotype-phenotype relationships.

Similarly to traditional methods, hiPRS is based on a simple and interpretable weighted

model. However, as highlighted in the summarizing scheme in Fig 1, our proposal overcomes

the limitations of both traditional PRSs and modern Machine Learning approaches. In

particular,

1. Compared to PRSs methods, hiPRS can include high-order interactions in the model with-

out affecting weights estimation. Furthermore, its model fitting is data-driven, not relying

neither on GWAS summary statistics nor on any other type of external information.

2. hiPRS differs from most ML algorithms in that it provides an easily accessible, readable and

interpretable model not meant for risk prediction only, but for discovery and validation of

genetic susceptibility as well. Additionally, it is able to control overfitting, even on small

samples.

3. On top of that, hiPRS is designed to be robust to class imbalance, which is oftentimes an

issue when modeling rare complex diseases. Finally, we mention that, with very little effort,

hiPRS can be generalized to include clinical covariates in the search for interactions, thus

recovering their mediating role in determining SNPs effect on the outcome.

In the present work we demonstrate through a comprehensive simulation study the supe-

rior performance of hiPRS w.r.t. state of the art methods belonging either to Penalized PRSs or

ML literature (cf. Fig 1), both in terms of scoring performance and interpretability of the

resulting model. Moreover, we test hiPRS against complexities not seldom arising in real life

research scenarios, such as small sample size, class imbalance and the presence of noise, show-

casing its robustness to extreme experimental settings. Finally, we apply hiPRS to an interest-

ing case study on real data from the DACHS cohort [34], defining an interaction-aware

scoring model to predict mortality of stage II-III Colon-Rectal Cancer (CRC) patients treated

with oxaliplatin.

Results

Simulation study

This section describes the results of a large set of experiments run on simulated data whose

generative mechanism was designed to present complex non-linear dependencies between a

binary outcome Y and high-order SNP-SNP interactions. In particular, the positive class in the
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generated data, namely {Y = 1}, was defined in terms of the rules reported in Fig 3, which are

ultimately high-order interactions. Additionally, each of the observed outcome values was mis-

labeled with probability ε (hereby called random noise), in an attempt to make the relationship

between the outcome and the predictors less deterministic. More details on the generative

algorithm can be found in Materials and Methods (cf. Simulated Data with Non-Linear Inter-

action Effect).

hiPRS outperforms benchmark algorithms in prediction performance. To judge the

performance of hiPRS, we run a first experiment on simulated data and we compared the

results with those of a comprehensive set of benchmark algorithms coming both from the tra-

ditional and more recent literature on polygenic risk prediction. Note that, to ensure a fair

comparison, we only included methods that did not rely on any type of external information

(e.g. summary statistics) besides individual-level genotype. More precisely, we picked methods

from the following two classes: PRSs taking raw SNP values as input (Penalized PRSs) and

algorithms from the ML literature. In the first group we included Lasso [35], Ridge [36], Elas-

tic-Net [37] and glinternet [38]. The first three are penalized LR-based PRS methods with

additive main effects and no interactions, while the last one is a penalized LR with group-

Lasso regularization that includes second-order interactions. Conversely, as ML methods, we

included two scoring algorithms accounting for high-order interactions: the approach pro-

posed by Behravan et al. [39], that exploits XGboost for interaction selection and SVM for

classification, and the one by Badre et al. [40], that relies on a Deep Neural Network (DNN)

model. Specific technical details on each of these approaches, together with their implementa-

tion and chosen hyperparameters, can be found in the Materials and Methods section (cf.

Benchmark Algorithms). All of this was considered within an experimental setting of mild

complexity (i.e. reasonable sample size and low noise), consisting of 30 independent simula-

tions. Indeed, for each of these we generated 1000 observations for training and 500 observa-

tions for testing. The mislabing noise probability was set to ε = 0.01.

The glinternet algorithm allows the user to define the number of interaction terms to

include in the model, which we set to 3 and 8. Note that this method includes main effects of

all considered interactions and estimates a parameter for each categorical level and their prod-

ucts. Therefore, 8 interaction terms actually correspond to more than 8 × 32 = 72 regressors in

the LR model (in particular, in our experiments we obtained 93 of them). In light of this, we

chose 8 as maximum number of interactions, as that reflected the amount of generating rules

in the simulated data (cf. Fig 3), while the value of 3 is meant to test the performance of a sim-

pler model. Differently from glinternet, in hiPRS the number of interaction terms K actually

corresponds to the final dimension of the model. Here, we set K = 10, 40, resulting in two

models of different complexity. In principle, both of them have enough degrees of freedom

to discover the generative model, nevertheless, they both allow for handy readability and

interpretability of the fitted model. We did not impose any limit on the order of the interac-

tions, whereas we set the frequency threshold δ to 0.05.

In Fig 4 we report the boxplots of the performance metrics in the 30 independent trials.

The three Penalized PRSs behave similarly, with an average AUC around 0.6 and an Average

Precision (AP) slightly above 0.3. Their performance reflects the maximum predictive power

achievable by additive PRSs in the presence of epistatis. SVM-Behravan has the worst perfor-

mance among the classifiers on both metrics, probably due to the fact that despite the SNP

selection step accounts for interactions, it is followed by a linear SVM classifier that considers

additive effects only. The DNN is unsurprisingly extremely performant, but its black

box nature does not allow us to identify the role of the predictors in scoring observations.

Moreover, whilst still high, it has a slightly lower and more variable AP. This might be due to

the tendency to overfit the small sample of positive observations during training, possibly

PLOS ONE Learning high-order interactions for polygenic risk prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0281618 February 10, 2023 6 / 27

https://doi.org/10.1371/journal.pone.0281618


caused by the very large number of parameters typical of these models. Glinternet best AUC

performance is achieved when including 8 interactions. However, the same model has a signif-

icant drop in AP, falling behind its simpler version with 36 terms: this goes to show that,

despite the inclusion of more predictors, the identified interactions are not necessarily the

most useful to identify the class of interest when the data is imbalanced. Moreover, the 93

parameters associated to the 8 interactions could easily overfit the underrepresented positive

class. The best performer overall is hiPRS modeling 40 terms, showcasing the ability of our

Fig 3. Simulation data generating rules. Graphical representation of the three rules that determine the positive class. Cases are obtained when A _ B _

C. More details on the generative model are provided in the Materials and Methods Section.

https://doi.org/10.1371/journal.pone.0281618.g003

Fig 4. hiPRS results on risk prediction against benchmark PRSs and ML approaches. AUC (left) and AP (right)

performance distributions of 30 independent trials. In grey the three traditional penalized PRSs approaches with

additive effects only; in violet the two ML algorithms (SVM-Behravan and DNN-Badre); in pink glinternet algorithm

for two model dimensions (3 interactions, i.e. 36 terms, and 8 interactions, i.e. 93 terms); in green hiPRS for K = 10 and

K = 40.

https://doi.org/10.1371/journal.pone.0281618.g004
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approach to identify predictive interactions that generalize well irrespectively of the under-

representation of the positive class. The results obtained for K = 10 are also remarkable, espe-

cially if we consider that they correspond to the model having the least number of parameters.

hiPRS captures and explains interaction-based generative mechanisms better than

benchmarks. One of the added values of hiPRS is the capability of capturing dependencies

among predictors, by selecting the most relevant to determine the phenotype and presenting

them within a simple and interpretable model. In many research settings, a slight loss in

prediction quality may be acceptable if it leads to a more meaningful interpretation of the pre-

dictors [41, 42]. To test the ability of hiPRS in capturing them, we focused on one of the previ-

ously mentioned datasets, and checked the 10 interactions selected by the simplest model,

K = 10. We report the selected interactions in Fig 5. We mention that, to ensure a fair compari-

son, we picked the dataset where the worst performer, SVM-Behravan, achieved one of its

highest AUC. This dataset contained 182 cases in the training set, i.e. 18.2% of the total. The

bar chart in Fig 5 reports the absolute frequency of the generating rules available in the positive

class.

hiPRS captures most of rule C, assigning very high positive betas to the first, second and

fourth interaction. Combined together, the fourth and fifth selected interactions partially

recover rule A, while the third one almost fully captures rule B.3. Note that, among positive

samples in the training data, B.3 is the most frequent version of rule B (see Fig 5, left panel). It

Fig 5. Interpretability analysis. (A) Absolute frequency of the generative rules in the training data, limited to the positive class. (B) Interactions

selected by hiPRS with K = 10 and corresponding β coefficients. (C) Coefficients of the glinternet model with 3 interaction terms: main effects are in

gray, interactions in yellow. (D) Lists of SNPs selected by SVM-Behravan during its five internal cross validations, cf. Benchmark Algorithms in the

Materials and Methods Section. Note: reported results are limited to one simulation among the 30 randomly generated datasets.

https://doi.org/10.1371/journal.pone.0281618.g005
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is also interesting to note that hiPRS finds two protective terms, namely {SNP4 = 0} and {SNP5

= 0}, that both nullify rules A and B.

Let us now briefly discuss the results obtained by the competitors. In panel (c) of Fig 5 we

report the model parameters for glinternet when modeling 3 interactions. Here, we see that

the good performance of glinternet is granted by the inclusion of three interaction terms in the

model, which, despite being of second order only, are subsets of the true generating rule C.

Moreover, the estimated effect sizes are correctly positive for couples of identical allele fre-

quencies only (i.e., the diagonal of the matrices of coefficients associated to each interaction).

However, due to extremely large number of parameters, it is very hard to inspect the model

and drive suitable conclusions. Furthermore, main effect sizes are not truly relevant in deter-

mining the phenotype and the generative mechanism is only captured partially, as rule C is the

only one that is actually identified. Within the same Figure, but in panel (d), we list the SNPs

selected by SVM-Behravan during its 5-fold cross-validation. Notably, SVM-Behravan is able

to recover some of the SNPs associated with the generating rules, however, we are left with no

information on the structure of the interactions.

hiPRS can deal with extremely small sample size. We tested hiPRS performance for

small sample sizes. We believe this to be a relevant setting, as in most real research scenarios

clinicians have to deal with individual-level data of significantly small cohorts. To this end,

starting from the sample size that we considered in our previous experiments, we repeated our

analysis on a sequence of four decreasing sample sizes, namely n = 1000, 750, 500, 250. That is,

for each n, we run 30 independent simulations, and we registered hiPRS performance in terms

of AUC and AP. To ensure comparable results, the noise level was fixed to ε = 0.01 for all

experiments, and the model was always evaluated on a test set of 500 instances. Once again, we

tested hiPRS with K = {10, 40}, while δ = 0.05 as before. Results are reported in Fig 6, panel A.

Despite the unavoidable decrease in performance, we note that even for very small samples,

250 observations, hiPRS is able to provide insightful results, with AUC levels of 0.8 and� 0.7

respectively. AP is lower,� 0.5 for K = 40, but still significantly better than traditional penal-

ized PRSs when trained on 1000 observations. Nonetheless, note that a training sample of 250

observations in total corresponds to less then 75 cases to learn from (cf. Simulated Data in

Materials and methods), which is an extremely challenging setting. For 500 training samples

(i.e.� 150 cases at most) hiPRS with K = 40 reaches almost 0.9 AUC and an AP of� 0.7.

These results testify in favour of hiPRS generalization potential, which is likely induced by the

mRMR-based interaction selection algorithm. Indeed, the latter is optimized to select the most

predictive features, while favouring the introduction of diverse information in the model. Min-

imizing redundancy in the selection makes hiPRS less prone to overfitting, irrespectively of the

sample size or the number of cases.

hiPRS is robust to class imbalance. To test hiPRS against extreme class imbalance, we

had to modify slightly our procedure in the generation of the simulated data. This is because

although our generative mechanism is based upon random generation of allele categories and

random noise (ε), it also relies on a deterministic rule-based definition of the positive class.

Therefore, the positive class will always appear in the data with an approximately fixed fre-

quency depending on ε (cf. Materials and methods). We overcame this drawback via under-

sampling. More precisely, let 0� q� 1 be any wished proportion. To obtain a training sample

of 1000 instances and 1000q cases, we generate a larger dataset where observations are added

iteratively until there are at least 1000q cases and 1000(1 − q) controls, then we discard all

exceeding observations. We adopted this procedure for a varying proportion of cases, namely

q = 2.5%, 5%, 10%, 15% and 20%. For each of those values, we generated 30 independent

training sets, and measured hiPRS performance over as many independent test sets of 500

instances. We mention that, while we used subsampling to generate the training data, we stuck

PLOS ONE Learning high-order interactions for polygenic risk prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0281618 February 10, 2023 9 / 27

https://doi.org/10.1371/journal.pone.0281618


Fig 6. Sensitivity analysis results. Average performance of hiPRS in terms of AUC and AP for variable sample size

(A.1 and A.2), class imbalance (B.1 and B.2) and missing heritability, i.e. noise (C.1 and C.2). Confidence bands are at

the 95% level. The x-axis is in logarithmic scale for panels C.1 and C.2.

https://doi.org/10.1371/journal.pone.0281618.g006
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to our usual approach for the test data. Indeed, the complexity lies in training models on

imbalanced data; furthermore, the distribution of classes in the test set has no impact on the

metrics that we use for evaluation, i.e. AUC and AP.

In Fig 6, panel B, we report the results for this simulation study. Notably, even for the small-

est proportion of observations in the positive class (2.5%), hiPRS succeeds in learning a suffi-

ciently generalizable set of interactions, with AUC values above 0.6 when K = 10, and above

0.75 when K = 40. Moreover, the larger model goes beyond 0.7 on both AUC and AP for a pro-

portion of cases of 5%, meaning only 50 observations to learn from.

hiPRS is robust to variability (missing heritability). Missing heritability is the propor-

tion of variance in the phenotype that cannot be explained by genotype information [43]. This

variability can be induced by several factors [43]: one is the need to account for SNP-SNP

interactions when modeling phenotypic traits [44], but it can be nonetheless induced by fac-

tors that cannot be modeled with the data at hand. In our simulation setting, we reproduce the

effect of missing heritability via the noise parameter, as the two can be easily linked together.

The explicit way by which the missing heritability depends on ε is detailed in Materials and

Methods Section, Eq (9). To test hiPRS robustness to variability in the training data, we gener-

ate 30 training and test set, respectively with 1000 and 500 observations, for each of the follow-

ing noise levels, ε = 0.01, 0.02, 0.05, 0.1 and 0.2. Results are in Fig 6, panel C. Note that, up to a

noise level of 10% (i.e.� 100 mislabeled observations in the training set, and� 50 in the test

set), both models maintain an average AUC near 0.8. This is considerably interesting if we

consider that a noise of ε = 0.1 corresponds to a missing heritability of 51%, i.e. a setting where

the SNPs themselves can only explain at most 49% of the target variability.

Simulated real biological model

In this section we present the results about a second simulation study based on a simpler but

biologically grounded model. Indeed, while the previous experiments featured complex gene-

gene interactions, the underlying generative mechanism was somewhat artificial, possibly

resulting in complexities that deviate from biological epistatis.

In light of this, we repeated our analysis on a different case study concerning genetic vari-

ants and susceptibility to atrial fibrillation, a context in which epistatic effects have already

been reported [45, 46]. For the sake of our analysis, we considered a simple setting in which

three SNPs are used to predict the risk of atrial fibrillation. In particular, we relied on the data-

set available in [46], which we exploited to generate 30 independent bootstrap samples, each

counting 5000 observations for training and 1000 for testing. We refer to the Materials and

Methods section for a schematic summary of the exploited dataset (Fig 9), a detailed descrip-

tion about the biological mechanisms and the data generation.

We fit hiPRS with a frequency threshold of δ = 2%, while we set K = 13. In order to grant

additional insights, we also compare the performance of hiPRS with that of the benchmark

algorithms considered in the previous section: a purely additive PRS (this time without penali-

zation terms, given the small number of SNPs involved), DNN-Badre and glinternet. For

DNN-Badre, we employed the same neural network architecture as before. For glinternet, we

set the number of interactions to include in the model to 3, allowing all the possible combina-

tions of the three SNPs. As for SVM-Behravan, we decided not to include the model in this

comparison due to the extremely scarce performance achieved in the previous experiment.

Results are in Fig 7 and Table 1. Fig 7 shows the peformance of hiPRS and its competitors

across the 30 independent trials. In terms of AUC, the three models including interactions per-

form comparably well, with a small but consistent gain with respect to the purely additive PRS.

DNN-Badre has the most volatile performance, which is most likely due to the large number
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of parameters in the DNN architecture and their randomized initialization. Conversely, glin-

ternet and hiPRS show very similar results. However, as for our previous case study, the perfor-

mance of the former drops significantly when we consider the AP metric (cf. Fig 4). Overall,

hiPRS appears to be the most valuable alternative, both in terms of prediction power and

computational cost (see Table 1). Nonetheless, it should be noted that all models have a limited

capability in predicting the outcome, with AUC and AP nearly always below 0.7. This, how-

ever, is not surprising: atrial fibrillation is a complex phenomenon that is not fully determined

by genetic factors (missing heritability), instead it is also affected by external factors such as

life-style and other comorbidities [47, 48].

Case study on real genotype data

Oxaliplatin-based chemotherapy is a standard treatment to treat colorectal cancer patients,

including stage III and selected stage II patients. However, response rates to oxaliplatin vary

substantially between patients and some patients suffer from serious side effects caused by the

treatment. Therefore, additional consideration of genetic markers to identify patients who are

more likely to benefit from oxaliplatin would be highly desirable [33]. Here, we exploited hiPRS

to build a polygenic risk score that could predict the short-term survival of oxaliplatin treated

patients. The analysis included 349 stage II-III patients who received oxaliplatin from an ongo-

ing population-based case-control study (DACHS, colorectal cancer: chances for prevention

through screening). We refer to the Material and Methods Section for a detailed description of

the data. We restricted our attention to those patients that either survived (0) or died within

three years (1), and we constructed the PRS on the base of nine recently validated SNPs.

Fig 7. Results and comparisons for a real biological setting. AUC (left) and AP (right) performance distributions of

30 independent trials, sampled according to a real biological mechanism where SNPs regulate factors associated to

atrial fibrillation. In grey, a traditional PRS with additive effects only; in violet the ML based algorithm, DNN-Badre; in

pink glinternet (31 logistic terms); in green hiPRS (K = 13).

https://doi.org/10.1371/journal.pone.0281618.g007

Table 1. Fitting times in a real biological setting. Fitting times for hiPRS and the benchmarks algorithms, averaged

across 30 independent simulations.

PRS approach Average fitting time (s)

Additive PRS 0.02

DNN-Badre 66.59

glinternet 0.31

hiPRS 0.19

https://doi.org/10.1371/journal.pone.0281618.t001
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To account for the small sample size, the analysis was carried out via cross-validation on 4

folds. This means that the whole procedure required to build the hiPRS was repeated on each

fold separately, with a common choice of the hyperparameters δ and K. The values of the two

were optimized via grid-search and resulted in δ = 15.5% and K = 5. To highlight the improved

performance derived from the inclusion of high-order interactions in the model, a Penalized

PRS with Lasso regularization (i.e. modeling additively SNP’s main effects only) was also

implemented.

Results are shown in Fig 8. The boxplots report the AUC values obtained by the two PRSs

across the four folds of the cross-validation procedure. Despite the small number of training

data, it appears that hiPRS is able to find interactions that generalize well and that are far more

predictive with respect to single SNPs. Indeed, hiPRS reports an average AUC of 0.72 and uses

as little as 6 terms, counting the intercept. In contrast, the Penalized PRS introduces 9 × 3 +

1 = 28 parameters but only manages to obtain an average AUC of 0.57. This result supports

the idea that SNPs interactions may play a role in quantifying the response to oxaliplatin

treatments.

At this regard, it is of interest to know which interactions were selected by the hiPRS rou-

tine. We have reported in Fig 8, right panel, the five interactions identified when fitting hiPRS

on the whole dataset. Of note, we mention that one of the longest interactions, namely

frs1172113 ¼ 1; rs4939378 ¼ 1; rs3812863 ¼ 1; rs1360485 ¼ 2g;

was also the most robust. Indeed, that was the only interaction to be always selected during the

cross-validation routine.

Discussion

In this work we presented hiPRS, a novel approach to tackle polygenic risk scoring that cap-

tures and models the effect on the phenotype of single SNPs and SNP-SNP interactions of

potentially very high order. The algorithm takes individual-level genotype data as an input,

overcoming potential biases of GWAS information and can work on any predefined set of

SNPs to provide an easily interpretable tool not only for accurate prediction, but also to

Fig 8. DACHS case study results. Left panel: AUCs obtained by hiPRS and a benchmark model during cross-validation (four folds). Average AUCs are

0.72 and 0.57 respectively for hiPRS and the benchmark model. Right panel: interactions selected by hiPRS, and corresponding effect-sizes, when fitting

the model on the whole dataset. In grey are reported the pathways each SNP belongs to (cf. Materials and methods).

https://doi.org/10.1371/journal.pone.0281618.g008
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perform solid inference and SNP-SNP interaction discovery or validation. hiPRS allows the

user to define the size of the model and the maximum order of the interactions to search for,

which allows for reliable parameter estimations, especially for small samples, and convenient

inspection by domain practitioners.

We have tested hiPRS against similar benchmark methods that rely on individual-level

data, demonstrating its superior performance with respect to traditional PRSs and more com-

plex ML-based methods. Indeed, hiPRS performs significantly better than any model account-

ing for additive effects only (i.e. Lasso, Ridge, Elastic-Net and SVM-Behravan) when the true

generative mechanism incorporates SNP-SNP interactions, i.e., in the presence of epistatic
effects. Moreover, its results are on pair with state-of-the-art methods accounting for interac-

tions, such as glinternet, a more advanced penalized PRSs, and DNN-Badre, a nonlinear

model based on artificial neural networks. Nevertheless, with respect to glinternet, hiPRS

allows to include interactions of higher order with a much smaller set of parameters to esti-

mate. ML-based approaches like DNN-Badre can instead model interactions of extremely high

order and perform very well in patients’ scoring, as shown in our benchmark experiment, but

tracing back the effect of all predictors or reconstructing the fundamental generating interac-

tions from those complex black-box models is almost impossible. Even by applying to these

models the wide variety of Explanation algorithms available, such as SHAP or LIME, one may

at most quantify the role of each covariate alone, without however being able to retrieve any

information on their interaction patterns.

There are some relevant facts about hiPRS that are worth mentioning. One lies in the fact

that the algorithm explicitly defines and selects interaction terms as sequences of feature-level

pairs. This aspect allows to gather fundamental insights on the true generating mechanism of

the phenotype, especially in the presence of epistatic effects. For instance, there may be situa-

tions in which the same SNPs can have either a risk or a protective effect on the phenotype

depending on the alleles’ configuration, as in the simulated example for which we reported

hiPRS selected interactions (cf. SNP4 and SNP5 in Fig 5). In that case, only hiPRS consistently

assigned a proper effect to each level of the two features, by estimating a coefficient for each

interaction that included one of the predictive SNP-allele pairs. While a method like glinternet

might capture the effect of specific genotypes, this comes at the expense of estimating a β
parameter for each of the possible SNP-allele combinations. Conversely, hiPRS can directly

select the predictive patterns only, and estimate their unique effect on the disease.

Besides all the relevant aspects mentioned above, in the present work we wished to demon-

strate hiPRS’ capability to tackle the complexities of real research scenarios. To this end, we

validated our method through an extensive set of simulations, showcasing its ability to deal

with noise, strong class imbalance and even extremely small sample sizes without overfitting

on the training data. This result was made possible thanks to the combination of the frequency

threshold δ, which reduces the number of candidate interactions to those appearing in a suffi-

ciently large portion of the positive class, and the mRMR-based interaction selection algo-

rithm. Indeed, minimizing redundancy (while maximizing relevance) forces hiPRS to select

the most diverse predictive interactions, which allows the model to generalize and capture the

broader picture of the generative mechanism. This aspect was confirmed inspecting the 10

interactions selected in Fig 5. While all competitors picked the SNPs defining the most fre-

quent rules in training data only (i.e. rule C in that example), hiPRS managed to include

instances of other less frequent generative rules, and assign these terms a large positive

coefficient.

Besides testing hiPRS on simulated settings, we applied the algorithm to a Case Study on

real genotype data. Results show a significant improvement in performance w.r.t. a traditional

Penalized PRS. Notably, the two terms in the resulting model (cf. Fig 8, right panel) with the
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highest positive effect on the phenotype are third- and second-order interactions, which would

require an extremely large number of predictors for their effect to be captured by traditional

PRSs. Conversely, hiPRS estimates their effect together with other three terms only, allowing

for an accessible inspection of the lightweight resulting model. The results presented in this

case study were only validated internally via cross-validation, as further investigations were

not feasible due to the lack of external data. Nevertheless, the experiment was meant to show-

case the potential of hiPRS and its applicability on real data. Since the obtained results are

promising, we plan to deepen the clinical interpretation and to validate the discoveries in

future works, as soon as a comparable external dataset is available. Of note, a previous study

[49] conducted a systematic review on prediction models incorporating multiple SNPs for

CRC risk prediction. The reviewed studies reach comparable performance to hiPRS only when

including both genomic and clinical covariates in their models. There, the clinical information

captures most of phenotype variability, while the independent effect of SNPs -represented via

traditional PRSs- add little power to the model. In this sense, it appears that hiPRS can exploit

much better the predictive power intrinsic in the genome, potentially raising AUC values if

coupled with clinical information.

At the moment, one major limitation of hiPRS lies in the scalability of the algorithm,

especially when the number of SNPs grows dramatically. In fact, the search of high-order

interactions is intrinsically expensive, and the computational cost of the mRMR selection

routine grows quadratically with the number of candidate interactions. For this reason,

our algorithm is better suited for those contexts where the number of SNPs is limited, as

in clinical studies that start from literature-validated SNPs. There, the computational cost

can be almost negligible: for instance, fitting hiPRS always took less than 5 seconds in our

experiments.

Nevertheless, the computational cost of hiPRS can be reduced in several ways, e.g. by

increasing the frequency threshold δ or decreasing the maximum interaction length lmax (for

further insights, see Fig 10 in the Appendix). Furthermore, hiPRS can easily accommodate

modern approaches to Frequent Itemset Mining, such as GPU-accelerated versions of

Apriori [50] or single-scan algorithms [51, 52], to boost the preliminary search of interac-

tions. Similarly, hiPRS can be integrated on top of those ML algorithms that are designed to

return (long) lists of predictive high-order interactions, without actually building a score, see

e.g. [53, 54].

Conclusions

In conclusion, in this work we presented hiPRS and demonstrated how this simple yet effective

novel PRS approach can represent a valuable tool for the analysis of genotype data in a preci-

sion medicine framework. Indeed, it can effectively be exploited in real life experimental set-

tings with potentially very small sample sizes to model either common or rare phenotypes

with the inclusion of high-order SNP-SNP interactions effects. We largely discussed potentials

and limitations of our proposed approach, but another remarkable aspect to note, is that the

method can flexibly accomodate any kind of categorical data, even though hiPRS was pre-

sented here to process SNPs data with allele frequency categories. For instance, it might be

effortlessly applied to data describing genetic variants or epigenetic mutations encoded as

binary variables, single and multi-level categorical clinical information, or their combination.

This makes the hiPRS approach particularly interesting to tackle multi-omic studies, or to

model the recognized interactions between genotype and environmental factors, or to investi-

gate the mediating role of clinical conditions in determining the genotype effect on complex

traits, widening the scope of applicability and relevance of our proposal.
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Materials and methods

Simulated data with non-linear interaction effect

The synthetic data was built as follows. We considered a pool of p = 15 independent SNPs,

S1,. . .,Sp, and a binary outcome variable Y. We assume each of the SNPs to follow a uniform

distribution over {0, 1, 2}. In order to impose a nonlinear dependence between the two, we

considered a model of the following form

Y ≔ ð1 � FÞ~Y þ Fð1 � ~Y Þ; ð1Þ

where ~Y is univocally determined by the fifteen SNPs via the relation below,

~Y ¼ 1, fS4 ¼ 2; S5 ¼ 2; S6 ¼ 2; S7 ¼ 2g _

fS4 ¼ 1; S5 ¼ 1; S6 6¼ 2; S7 6¼ 2Þ _ fS8 ¼ S9 ¼ S10g;
ð2Þ

whereas F� B(ε) is a binary random variable, independent on the SNPs, that we use to model

either noise in the data or unexplained variability. Note in fact that if F = 0, then ~Y and Y coin-

cide, otherwise the labels are flipped. It is worth noting the following facts.

1. The generative model features SNPs interactions up to order 7. To see this, let

I1 ≔ 1f2gðS4Þ1f2gðS5Þ1f2gðS6Þ1f2gðS7Þ;

I2 ≔ 1f1gðS4Þ1f1gðS5Þð1 � 1f2gðS6Þ1f2gðS7ÞÞ;

I3 ≔
X2

l¼0

1flgðS8Þ1flgðS9Þ1flgðS10Þ;

ð3Þ

where 1A denotes the indicator function of the set A. Then, the relationship described in (2)

can be rephrased in terms of interactions as

~Y ¼ 1 � ð1 � I1Þð1 � I2Þð1 � I3Þ: ð4Þ

Since I1 � I2� 0, it is easily seen that the highest order interactions in the above are of order

4 + 3 = 7.

2. Let ~pY ≔ Pð~Y ¼ 1Þ and pY ≔ PðY ¼ 1Þ. Upto some basic calculations, one can show that

~pY ¼ 121=729 � 16:6% and pY ¼ ~pYð1 � εÞ þ ð1 � ~pYÞε: ð5Þ

To see this, define the events A≔ {S4 = 2, S5 = 2, S6 = 2, S7 = 2}, B≔ {S4 = 1, S5 = 1, S6 6¼ 2,

S7 6¼ 2), C≔ {S8 = S9 = S10}. Since we assumed the SNPs to be independent and uniformly

distributed, it follows that

PðAÞ ¼ ð1=3Þ
4
; PðBÞ ¼ ð1=3Þ

2
� ð2=3Þ

2
; PðCÞ ¼ 3 � ð1=3Þ

3
: ð6Þ

Also, since A and B are disjoint, PðA [ BÞ ¼ 1=81þ 4=81 ¼ 5=81: Finally, since A [ B and

C are independent, we have

~pY ¼ PðA [ B [ CÞ ¼ PðA [ BÞ þ PðCÞ � PððA [ BÞ \ CÞ ¼

¼ PðA [ BÞ þ PðCÞ � PðA [ BÞPðCÞ ¼

¼ 5=81þ 1=9 � ð5=81Þð1=9Þ ¼ 121=729;

ð7Þ

thus proving the first statement in (5). Conversely, the second one is obvious as the
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independence of ~Y and F implies

pY ¼ E½Y� ¼ E½ð1 � FÞ~Y � þ E½Fð1 � ~Y Þ� ¼ E½1 � F�E½Y� þ E½F�E½1 � ~Y �: ð8Þ

In particular, we note that for ε� 0.2 we have pY� 30%, resulting in a class imbalance

where cases are the minority.

3. We can explicitely quantify the amount of variability in Y that cannot be explained by the

SNPs only. Indeed,

1 �
VarðE½YjS1; . . . ; Sp�Þ

VarðYÞ
¼ 1 �

ð1 � 2εÞ2~pYð1 � ~pYÞ

pYð1 � pYÞ
; ð9Þ

since E½~Y jS1; . . . ; Sp� ¼ ~Y and thus E½YjS1; . . . ; Sp� ¼ ð1 � 2εÞ~Y þ ε, by exploiting inde-

pendence and classical properties of conditional expectations. We refer to (9) as to missing
heritability. In our final experiment, we use the latter to provide better insights on the

hiPRS performance for different values of ε.

4. For any m 2 {1, . . ., p} and l 2 {0, 1, 2}, let 1{l}(Sm) be the indicator function of the event

{Sm = l}, i.e. the lth dummy variable associated to the SNP Sm. The best model f� for predict-

ing Y with the given SNPs can be thought as the solution to the following minimization

problem

f� ¼ argmin
f

EjY � f ðS1; . . . ; SpÞj
2

ð10Þ

where f is any map from f0; 1; 2g
p
! R. It is not hard to prove that there exists interaction

terms Ik ¼
Q

m2Mk
1flmgðSmÞ, where Mk � f1; . . . ; pg, and coefficients βk such that

f�ðS1; . . . ; SpÞ ¼ b0 þ
X

k

bkIk; ð11Þ

meaning that the best possible model has precisely the form hypothesized by hiPRS, see Eq

(13) in the Proposed methodology. We recall that the solution to (10) is given by the condi-

tional expectation, that is, f�ðS1; . . . ; SpÞ ¼ E½YjS1; . . . ; Sp�. However, as we noted previ-

ously, the latter equals ð1 � 2εÞ~Y þ ε. In particular, for our claim to hold, it is sufficient to

prove that ~Y can be written in terms of sums of products of dummy variables: however, as

we showed in (4), this is trivially true. More in general, this follows from what is known as

the canonical disjunctive normal form of a boolean function [55].

Therefore, by selecting the correct group of interactions, hiPRS may actually recover the

best model completely. Nonetheless, we remark that this is not our main priority: first of all,

we aim at building a PRS that is sufficiently predictive of the phenotype; then, we may as

well investigate whether the generative mechanism is being captured or not.

Simulated atrial fibrillation data

For our second simulation study we considered the case of genetic risk prediction for atrial

fibrillation, a clinical setting in which interaction effects are known to take place (see e.g. [45]).

In short, atrial fibrillation is an abnormal heart rhythm characterized by irregular and rapid

beats that can lead to blood clots in the heart. At the genetic level, researchers have linked atrial

fibrillation to a biological pathway known as the Rennin–Angiotensin System (RAS). In fact,

through a complicated mechanism that is yet to be understood completely, RAS genes can

influence blood pressure values, and, indirectly, impact on the susceptibility to atrial
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fibrillation [56]. In Tsai et al. [46], the authors identify three main polymorphisms in the RAS

pathway as associated to atrial fibrillation. The first two, M235 and T174M, are related to the

angiotensinogen gene. This means they provide instructions for the production of a protein

called angiotensinogen, a polipeptide that can become a vasoconstrictor when interacting with

suitable enzymes. The third one, instead, is the so-called Insertion/Deletion polymorphism

(ID), a mutation of the Angiotensin Converting Enzyme (ACE).

The case-control study in [46] counts 512 patients, half of which are cases. In their work,

the authors report in full detail the joint distribution of M235, T174M and ID across the two

classes, as summarized in Fig 9 (based on the related figure in [45]). Here, we use that empiri-

cal distribution to generate our own datasets. Equivalenty: we apply bootstrap resampling to

the cohort considered by Tsai et al. in [46].

DACHS data

For our case study we considered genotype-level data and clinical information coming from

an ongoing population-based case-control study (DACHS, colorectal cancer: chances for pre-

vention through screening). Details of the study have been previously described by Brenner

et al. in [34, 57]. The dataset originally included patients recruited between 2003 and 2015.

Genotype and complete follow-up data (for either 3, 5, or 10 years) were available for a total of

3689 histologically confirmed cases diagnosed between 2003 and 2014.

We excluded patients who have metastatic disease, who had not received adjuvant chemo-

therapy, received neoadjuvant chemotherapy, had an unknown start date of chemotherapy, or

died within 30 days of the start of chemotherapy. Of patients treated with first-line adjuvant

chemotherapy, we included stage II-III patients who received at least four cycles of oxaliplatin-

based treatments. Finally, in order to study the short-term survival, we excluded all patients

that died after 3 years. This resulted in a subsample of 349 patients. The main characteristics of

the study population are shown in Table 2. Details about genotyping and imputation for the

DACHS population have been described in detail somewhere else, see [33]. Among the avail-

able SNPs, we focused on the nine reported in Table 3. These are of particular interest as they

Fig 9. Simulated atrial fibrillation data. Schema of the distribution of cases (red section of the pie-plots) and controls (light blue section) in the case-

control study described in [46], for each multilocus genotype combination of M235, T174M and ID. Dark gray cells are associated to higher risk of

atrial fibrillation, while light gray cells are associated to protective combinations. The schema proposed here is based on the image reported in [45].

https://doi.org/10.1371/journal.pone.0281618.g009
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were only recently validated as associated with the efficacy of oxaliplatin-based treatment in

CRC patients [33].

Ethics statement and informed consent

All patients gave their written informed consent. The DACHS study was approved by the eth-

ics committees of the Medical Faculty of the University of Heidelberg and the State Medical

Boards of Baden-Wuerttemberg and Rhineland-Palatinate.

Proposed methodology

Preliminaries and problem statement. In order to describe our approach, we first intro-

duce some notation. Let S1, . . ., Sp be p SNPs and let Y be a random variable denoting a binary

outcome. We consider each SNP to be a categorical variable taking values in {0, 1, 2}, where

labels read as follows. We denote major allele homozygosis by 0, heterozygosis by 1, and minor

allele homozygosis by 2. To model SNP-alleles interactions, we use products of indicator func-

tions. For instance, I≔ 1{0}(S1)1{1}(S2) encodes the interaction between major allele homozigosis

in S1 and heterozygosis in S2. We may then define the collection of all SNP-allele interactions as

I ≔
Y

m2M

1flmgðSmÞ such thatM � f1; . . . ; pg and lm 2 f0; 1; 2g

( )

: ð12Þ

We note that, with little abuse of notation, the set I also contains the dummy-variables associ-

ated to the SNP-alleles, as those are obtained when M is a singleton.

We are given a dataset fsðjÞ1 ; . . . ; sðjÞp ; y
ðjÞg

N
j¼1

consisting of N i.i.d. realizations of the SNPs and

the outcome Y. Starting from these, we aim to construct a PRS of the form

hiPRS ¼ b0 þ b1I1 þ . . .þ bKIK ð13Þ

Table 2. Patient characteristics of the subsample analysed in the DACHS case study.

Number (%)

Age (years�50) 52 (14.9%)

Sex (Female) 130 (37.2%)

Stage (Stage II) 28 (8.0%)

Grade (grade 3-4) 109 (31.9%)

CRC site (Rectum) 87 (24.9%)

Death 50 (14.3%)

https://doi.org/10.1371/journal.pone.0281618.t002

Table 3. SNPs considered in the DACHS case study.

Pathway SNPs

Folate rs1801131

Immunogenic cell death rs1050305

rs1799986

rs11172113

rs208294

rs1718119

rs1360485

Enterocyte subtype-related genes rs4939378

rs3812863

https://doi.org/10.1371/journal.pone.0281618.t003
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where fIkg
K
k¼1
� I . To this end, we propose a novel scoring method, hiPRS, where K is user-

specified and a data-driven algorithm returns the list of interactions with the corresponding

weights. We detail the whole idea in the following section.

hiPRS algorithm. For any I 2 I , let fiðjÞgNj¼1
be the corresponding observations in the

dataset. We define the collection of all cases and its complement as

O≔ fj j yðjÞ ¼ 1g; Z≔ fj j yðjÞ ¼ 0g; ð14Þ

so that O� {1, . . ., N} contains the indexes of those observations associated to the event Y = 1,

whereas Z refers to those patients for which Y = 0. We make the assumption that |O|� |Z|,

which is the typical scenario of a rare outcome. We refer to O and Z respectively as the minor-

ity and majority class. As a first step, we scan the data relative to the minority class, and we

search for those interactions I d;lmax
that appear with an empirical frequency above a given

threshold δ> 0, and have length at most lmax. More precisely, we define

I d;lmax
≔ I 2 I such that

1

jOj

X

j2O

iðjÞ > d and LengthðIÞ � lmax

( )

; ð15Þ

where the Length(I) is the number of SNPs involved in the definition of I. In principle, com-

puting I d;lmax
can be very demanding since jI j ¼ 4p. However, this drawback is mitigated by

two key factors. First of all, we note that each interaction uniquely corresponds to a pattern of
alleles. For instance, let

I ¼ 1f1gðS2Þ1f0gðS3Þ1f1gðS5Þ ¼ 1f1g�f0g�f1gðS2; S3; S5Þ: ð16Þ

Then i(j) = 1 if and only if the pattern {S2 = 1, S3 = 0, S5 = 1} is observed in the jth patient. This

duality between interactions and patterns allows us to reframe (15) in the context of frequent

itemsets mining, where we can relay on a moltitude of algorithms such as Apriori and

FP-Growth. Additionally, the computational cost is alleviated by the fact that we limit the

search of candidates to the minority class O.

The next step is to extract a suitable sublist fIkg
K
k¼1
� I d;lmax

to be used in (13). While this

problem can be framed in the context of feature selection, finding an optimal solution can be

very hard due to the large number of candidates. To overcome this drawback, we introduce

a filtering technique based on the so-called Minimum Redundancy—Maximum Relevance

approaches, mRMR for short. The idea goes as follows. First, we introduce a relevance measure

based on the (empirical) mutual information, that is

IðI;YÞ≔
X

j ¼ 1; . . . ;N
a ¼ 0; 1

b ¼ 0; 1

1

N
jfiðjÞ ¼ a; yðjÞ ¼ bgjlog

jfiðjÞ ¼ a; yðjÞ ¼ bgj=N
jfiðjÞ ¼ agj=N � jfyðjÞ ¼ bgj=N

� �

:
ð17Þ

By definition, IðI;YÞ � 0 and larger values are obtained when I and Y are informative with

respect to each other. Parallel to this, we introduce a redudancy measure S : I � I ! N that

quantifies the similarity between two given interactions. More precisely, we define SðI;TÞ to

be the number of common alleles within the two patterns. We then construct the set fIkg
K
k¼1

along the lines of mRMR methods, that is through the greedy optimization of the ratio between

relevance and redundancy. We report a detailed pseudocode in Algorithm 1.

We remark that K is an hyperparameter chosen by the user. In particular, one may as

well optimize its value accordingly to some grid-search algorithm of choice. Indeed, the

most computationally expensive parts in the hiPRS pipeline are the candidates search and the
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computation of relevance/redundancy measures. Once these steps have been carried out, mul-

tiple values of K can be tested and the user may choose the one considered to be optimal (e.g.,

the one yielding the model with the highest AUC).

Algorithm 1: Extraction of the hiPRS allele-patterns, starting from a list of candidates and

raw data.

Input: K, Id;lmax
and fðiðjÞ1 ; . . . ; iðjÞjId;lmax j

; yðjÞÞgNj¼1
.

Output: fIkg
K
k¼1
� Id;lmax

.
/� Select most relevant interaction �/
I1  argmaxI2Id;lmax

IðI;YÞ
Ipicked  fI1g

I left  Id;lmax
n Ipicked

/� Add patterns iteratively �/
while jIpickedj < K do
for I 2 I left do

VI  IðI;YÞ // Relevance
WI  

1

jIpicked j

P
T2Ipicked

SðI;TÞ // Average redundancy

end
if minI2I left

WI ¼ 0 then
/� If no redundancy, select most relevant �/
I�  argmaxI2I left

VI

else
/� Otherwise, pick best compromise �/
I�  argmaxI2I left

ðVI=WIÞ

end
Ipicked  Ipicked [ fI�g
I left  Id;lmax

n Ipicked

end
return Ipicked

Once the set I picked ¼ fIkg
K
k¼1

has been identified, we compute the weights β0, . . ., βK by fit-

ting the Logistic Regression model below

logitPðY ¼ 1Þ ¼ b0 þ b1I1 þ � � � þ bKIK : ð18Þ

Finally, we define the hiPRS accordingly to (13), meaning that the score is actually the (affine)

linear predictor in (18).

Benchmark algorithms

We report below a short description and the benchmark algorithms together with their imple-

mentation details.

Penalized PRSs with additive effects. From this class of methods we chose three of hiPRS

competitors, namely Lasso [35], Ridge [36] and Elastic-Net [37]. These algorithms are tradi-

tional penalized LR models that only account for the additive main effect of the predictors on

the target variable, while imposing an ℓ2 bound of the form jjbjj
2

2
� s (Ridge) or an ℓ1 bound

||β||� s (Lasso), or the combination of the two (Elastic-Net) on the coefficients. Note that ℓ1

penalizations also perform feature selection by shrinking coefficients to zero, making these

approaches popular to model polygenic risk from large genotype data. Fundamentally, the

penalization terms enter the loss function during the training phase, and their contribution is

weighted by some hyperparameter, e.g. λ for Lasso and Ridge, λ1 and λ2 for Elastic-Net. To

run these algorithms in our experiments, we relied on the implementation available in the
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Python library scikit-learn, with default values for λ, λ1 and λ2. All the code was written in

Python 3.7.

Glinternet. Glinternet is a method for learning pairwise interactions in a LR satisfying

strong hierarchy: whenever an interaction is estimated to be nonzero, both its associated main

effects are also included in the model. The idea of the algorithm is based on a variant of Lasso,

namely group-Lasso [58], that sets groups of predictors to zero. glinternet sets up main effects

and first-order (i.e., pairwise) interactions via groups of variables and then intuitively selects

those that have a strong overall contribution from all their levels toward explaining the

response. For more formal definitions we refer the reader to [38].

The amount of regularization is controlled by λ, with larger values corresponding to stron-

ger shrinkage and less interactions included. The freely distributed R implementation of

glinternet allows the user to define the number of pairwise interactions (n_int) to find and the

size of a grid of λ values of decreasing strength to fit the model with. This grid is built automat-

ically by splitting equally from λmax, that is data-derived as the value for which all coefficients

are zero, to the minimum value, computed as λmin = λmax/0.01. The algorithm will fit this path

of values and stop when n_int is reached. For this experiment we set n_int = [3, 8], defining a

grid of 100 λs. All other hyperparameters were left to default settings.

DNN-Badre. DNN-Badre [40] constructs a Deep Feed Forward Neural Network (DNN)

to predict a binary outcome. To implement their approach, we built a DNN architecture with

the same specifics provided by the authors, i.e. number of layers, neurons and activation func-

tions. We trained the models via stochastic gradient descent, with mini-batches of batch size

10 and for a total of 200 epochs. The optimization was carried out using the Adam optimizer,

with a learning rate of 10−3. All the code was written in Python 3.7, mostly using the Pytorch

library.

SVM-Behravan. SVM-Behravan is a multi-step ML-based algorithm recently presented

as a state-of-the-art approach to polygenic risk scoring [39, 59]. We will provide here an

intuitive description of the algorithm with the needed details to understand our settings for

the present work, while for more technical specifications we refer the reader to the seminal

work in [39]. The algorithm presented in Behravan et al. (2018) is composed of a so called

first module, where an XGBoost is used to evaluate the importance of SNPs on a risk predic-

tion task by providing an initial list of candidate predictive SNPs. The authors use the aver-

age of feature importances (a.k.a. “gain”) provided by the gradient tree boosting method, as

the contribution of each SNP to the risk. Then, in the second module, the candidate SNPs are

used for an adaptive iterative search to capture the optimal ways of combining candidate

SNPs to achieve high risk prediction accuracy on validation data. In particular, top M and

bottom M SNPs from the candidate list are ranked separately based on accuracy, then top

and bottom N SNPs are switched between the two lists. The process is repeated with M (i.e.,

window size) increased of W at each iteration, until the two sublists overlap and the optimal

ranking is achieved. Finally, an SVM is trained to distinguish cases (positive samples) and

controls (negative samples) using the S top-ranked SNPs in the optimal ranking as feature

vectors and a linear kernel. In the original paper the performance of the algorithm is aver-

aged across 5-fold CV, meaning that the pipeline from first module to SVM is repeated 5

times on different folds of the training and test set. As the author included this step to over-

come the problem of small samples to train high-performance risk prediction models, we fol-

lowed their instructions and for each of the 30 simulated dataset we performed the 5-fold

CV. This lead to the 5 different subsets of SNPs selected as shown in the right panel of Fig 5.

However, to keep the running time of this computationally very expensive method reason-

able and for a fair comparison with all the other methods for which we did not perform

extensive optimal hyperparameter search, we avoided the very long optimization of the
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XGBoost model by setting manually the optimal hyperparameters described in the paper. In

particular, we set M = 2, W = 1, N = 1.

Performance metrics

In imbalanced settings, the Accuracy of a classifier (i.e., the fraction of correctly classified

observations) can be a miselading metric to assess a model performance. Therefore, to evaluate

hiPRS and the benchmark algorithms in predicting the outcome, we exploited two metrics

that combined provide a full picture of the real performance of these methods, especially in

predicting the most interesting class (i.e. the positive class), which is oftentimes the underrep-

resented one in real data. Therefore, for our experiments we chose the Area Under the receiv-

ing operating characteristic Curve (AUC) and the Average Precision (AP).

The two are computed as follows. For any fixed discrimination threshold, let TP and FP be

the true and false positives, respectively. Similarly, let TN and FN be the true and false nega-

tives, respectively. First, we derive the following quantities,

TPR ¼
TP

TP þ FP
; FPR ¼

FP
FPþ FN

; Recall ¼
TP

TPþ FN
: ð19Þ

that is, the True Positive Rate (TPR), the False Positive Rate (FPR) and the Recall. TPR is the

fraction of true positives out of the positives, also known as sensitivity or precision. FPR, or

specificity, is the fraction of false positives out of the negatives. Finally, the Recall quantifies the

ability of the classifier to recognize positive samples. By plotting TPR against FPR for various

discrimination threshold levels, we obtain the ROC curve. Conversely, the pair (Recall, TPR)

yields the precision-recall curve. AUC summarizes the performance of a binary classifier by

computing the area under the ROC curve, while AP considers the area under the precision-

recall curve. In practice, the two areas are estimated using quadrature rules. In our implemen-

tation, we employ the trapezoidal rule for AUC, while we use the rectangular rule for AP.

Appendix

Computational cost and time complexity of hiPRS

In this section, we provide some additional insights about the computational cost entailed by

hiPRS. To this end, we recall the notation used in the Materials and Methods section: here, p,

δ, K are the number of SNPs, the frequency threshold over minority class, and the final num-

ber of interactions included in the model, respectively.

The major source of computational cost, is given by the preliminary search of candidate

interactions. In fact, even though we rely on efficient data mining algorithms, the identifica-

tion of such candidates may still require/ eγp operations. This computational burden is not

affected by the choice of K, as that only impacts the final (cheaper) selection, while it is related

to the thresholding value δ. Fig 10 shows the overall time complexity of hiPRS, when dealing

with increasingly large datasets, p = 15, 20, . . ., 100, for different choices of δ. Here, we fixed

K = 40 and lmax = +1 for all the experiments, and we generated the data following the same

procedure adopted in our first simulation study (total number of observations N = 1000). We

mention that the picture is reported with a logarithmic scale on the y-axis.

For large thresholds, δ� 0.2, the algorithm can be safely applied to datasets featuring

hundreds of SNPs, with a total fitting time of few seconds. For 0.1� δ� 0.2, the situation

remains manageable, with hiPRS taking at most 1-5 minutes to process 100 SNPs. Con-

versely, smaller values of δ can make the algorithm prohibitive if too many SNPs are consid-

ered (δ� 0.05 and p� 40). In general, the overall computational cost always increases

exponentially with p, but the rate at which this happens is modulated by δ. This means that
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the algorithm can easily scale up when analyzing high-order interactions between common

genetic variants with high penetrance in the cases’ population, which allows the user to set

higher δ thresholds without the risk of missing informative patterns. On the other hand,

when seeking interaction patterns that include rare or ultra-rare variants, to keep computa-

tional time manageable, a strong initial candidate SNP selection (exploiting prior knowledge

and/or model-based approaches) is recommended.
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