2,988 research outputs found

    Equilibrium Simulation of the Slip Coefficient in Nanoscale Pores

    Full text link
    Accurate prediction of interfacial slip in nanoscale channels is required by many microfluidic applications. Existing hydrodynamic solutions based on Maxwellian boundary conditions include an empirical parameter that depends on material properties and pore dimensions. This paper presents a derivation of a new expression for the slip coefficient that is not based on the assumptions concerning the details of solid-fluid collisions and whose parameters are obtainable from \textit{equilibrium} simulation. The results for the slip coefficient and flow rates are in good agreement with non-equilibrium molecular dynamics simulation.Comment: 11 pages, 4 figures, submitted to Phys Rev Let

    Mortality, greenhouse gas emissions and consumer cost impacts of combined diet and physical activity scenarios: a health impact assessment study

    Get PDF
    Objective:\textbf{Objective:} To quantify changes in mortality, greenhouse gas (GHG) emissions and consumer costs for physical activity and diet scenarios. Design:\textbf{Design:} For the physical activity scenarios, all car trips from <1 to <8 miles long were progressively replaced with cycling. For the diet scenarios, the study population was assumed to increase fruit and vegetable (F&V) consumption by 1–5 portions of F&V per day, or to eat at least 5 portions per day. Health effects were modelled with the comparative risk assessment method. Consumer costs were based on fuel cost savings and average costs of F&V, and GHG emissions to fuel usage and F&V production. Setting:\textbf{Setting:} Working age population for England. Participants:\textbf{Participants:} Data from the Health Survey for England, National Travel Survey and National Diet and Nutrition Survey. Primary outcomes measured:\textbf{Primary outcomes measured:} Changes in premature deaths, consumer costs and GHG emissions stratified by age, gender and socioeconomic status (SES). Results:\textbf{Results:} Premature deaths were reduced by between 75 and 7648 cases per year for the physical activity scenarios, and 3255 and 6187 cases per year for the diet scenarios. Mortality reductions were greater among people of medium and high SES in the physical activity scenarios, whereas people with lower SES benefited more in the diet scenarios. Similarly, transport fuel costs fell more for people of high SES, whereas diet costs increased most for the lowest SES group. Net GHG emissions decreased by between 0.2 and 10.6 million tons of carbon dioxide equivalent (MtCO2_2e) per year for the physical activity scenarios and increased by between 1.3 and 6.3 MtCO2_2e/year for the diet scenarios. Conclusions:\textbf{Conclusions:} Increasing F&V consumption offers the potential for large health benefits and reduces health inequalities. Replacing short car trips with cycling offers the potential for net benefits for health, GHG emissions and consumer costs.MT, PM, NJ and JW were supported by the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence. Funding from the British Heart Foundation, Cancer Research UK, Economic and Social Research Council, Medical Research Council, the National Institute for Health Research, and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. JW is also supported by an MRC Population Health Scientist fellowship (grant number: MR/K021796/1). CB is supported by the UK Research Councils (grant number: EPSRC EP/L024756/1) as part of the Decision Making Theme of the UK Energy Research Centre Phase 3

    Time Scales for transitions between free energy minima of a hard sphere system

    Get PDF
    Time scales associated with activated transitions between glassy metastable states of a free energy functional appropriate for a dense hard sphere system are calculated by using a new Monte Carlo method for the local density variables. We calculate the time the system,initially placed in a shallow glassy minimum of the free energy, spends in the neighborhood of this minimum before making a transition to the basin of attarction of another free energy minimum. This time scale is found to increase with the average density. We find a crossover density near which this time scale increases very sharply and becomes longer than the longest times accessible in our simulation. This scale shows no evidence of dependence on sample size.Comment: 25 pages, Revtex, 6 postscript figures. Will appear in Phys Rev E, March 1996 or s

    Entropic Origin of the Growth of Relaxation Times in Simple Glassy Liquids

    Get PDF
    Transitions between ``glassy'' local minima of a model free-energy functional for a dense hard-sphere system are studied numerically using a ``microcanonical'' Monte Carlo method that enables us to obtain the transition probability as a function of the free energy and the Monte Carlo ``time''. The growth of the height of the effective free energy barrier with density is found to be consistent with a Vogel-Fulcher law. The dependence of the transition probability on time indicates that this growth is primarily due to entropic effects arising from the difficulty of finding low-free-energy saddle points connecting glassy minima.Comment: Four pages, plus three postscript figure

    Slip and flow of hard-sphere colloidal glasses

    Full text link
    We study the flow of concentrated hard-sphere colloidal suspensions along smooth, non-stick walls using cone-plate rheometry and simultaneous confocal microscopy. In the glass regime, the global flow shows a transition from Herschel-Bulkley behavior at large shear rate to a characteristic Bingham slip response at small rates, absent for ergodic colloidal fluids. Imaging reveals both the `solid' microstructure during full slip and the local nature of the `slip to shear' transition. Both the local and global flow are described by a phenomenological model, and the associated Bingham slip parameters exhibit characteristic scaling with size and concentration of the hard spheres.Comment: 4 pages, 4 figures. Accepted for publication in PR

    Small Ubiquitin-like Modifier protein SUMO enables plants to control growth independently of the phytohormone gibberellin

    Get PDF
    Plants survive adverse conditions by modulating their growth in response to a changing environment. Gibberellins (GAs) play a key role in these adaptive responses by stimulating the degradation of growth-repressing DELLA proteins. GA binding to its receptor GID1 enables association of GID1 with DELLAs. This leads to the ubiquitin-mediated proteasomal degradation of DELLAs and consequently growth promotion. We report that DELLA-dependent growth control can be regulated independently of GA. We demonstrate that when a proportion of DELLAs is conjugated to the Small Ubiquitin-like Modifier (SUMO) protein, the extent of conjugation increases during stress. We identify a SUMO-interacting motif in GID1 and demonstrate that SUMO-conjugated DELLA binds to this motif in a GA-independent manner. The consequent sequestration of GID1 by SUMO-conjugated DELLAs leads to an accumulation of non-SUMOylated DELLAs, resulting in beneficial growth restraint during stress. We conclude that plants have developed a GA-independent mechanism to control growth

    Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    Full text link
    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water phantom and ~76.6 times in the Zubal phantom compared to EGSnrc. As for absolute computation time, imaging dose calculation for the Zubal phantom can be accomplished in ~17 sec with the average relative standard deviation of 0.4%. Though our gCTD code has been developed and tested in the context of CBCT scans, with simple modification of geometry it can be used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl

    Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood

    Get PDF
    &lt;p&gt;Background: Patterns of wheezing during early childhood may indicate differences in aetiology and prognosis of respiratory illnesses. Improved characterisation of wheezing phenotypes could lead to the identification of environmental influences on the development of asthma and airway diseases in predisposed individuals.&lt;/p&gt; &lt;p&gt;Methods: Data collected on wheezing at seven time points from birth to 7 years from 6265 children in a longitudinal birth cohort (the ALSPAC study) were analysed. Latent class analysis was used to assign phenotypes based on patterns of wheezing. Measures of atopy, airway function (forced expiratory volume in 1 s (FEV1), mid forced expiratory flow (FEF25-75)) and bronchial responsiveness were made at 7–9 years of age.&lt;/p&gt; &lt;p&gt;Results: Six phenotypes were identified. The strongest associations with atopy and airway responsiveness were found for intermediate onset (18 months) wheezing (OR for atopy 8.36, 95% CI 5.2 to 13.4; mean difference in dose response to methacholine 1.76, 95% CI 1.41 to 2.12 %FEV1 per μmol, compared with infrequent/never wheeze phenotype). Late onset wheezing (after 42 months) was also associated with atopy (OR 6.6, 95% CI 4.7 to 9.4) and airway responsiveness (mean difference 1.61, 95% CI 1.37 to 1.85 %FEV1 per μmol). Transient and prolonged early wheeze were not associated with atopy but were weakly associated with increased airway responsiveness and persistent wheeze had intermediate associations with these outcomes.&lt;/p&gt; &lt;p&gt;Conclusions: The wheezing phenotypes most strongly associated with atopy and airway responsiveness were characterised by onset after age 18 months. This has potential implications for the timing of environmental influences on the initiation of atopic wheezing in early childhood.&lt;/p&gt

    Qualitative evaluation of media device orchestration for immersive spatial audio reproduction

    Get PDF
    The challenge of installing and setting up dedicated spatial audio systems can make it difficult to deliver immersive listening experiences to the general public. However, the proliferation of smart mobile devices and the rise of the Internet of Things mean that there are increasing numbers of connected devices capable of producing audio in the home. \Media device orchestration" (MDO) is the concept of utilizing an ad hoc set of devices to deliver or augment a media experience. In this paper, the concept is evaluated by implementing MDO for augmented spatial audio reproduction using object-based audio with semantic metadata. A thematic analysis of positive and negative listener comments about the system revealed three main categories of response: perceptual, technical, and content-dependent aspects. MDO performed particularly well in terms of immersion/envelopment, but the quality of listening experience was partly dependent on loudspeaker quality and listener position. Suggestions for further development based on these categories are given

    Towards dialogue: audio feedback on politics essays

    Get PDF
    This paper evaluates the use of audio feedback on assignments through the case study of a politics course, highlighting a number of pedagogical benefits. In particular, and using student testimonies, it argues that audio feedback provides a more personal feel to feedback; criticism, it appears, is easier to accept in the spoken word – as one student suggests, you know the marker is ‘not being harsh’ and is ‘just trying to help you really’. In addition, the paper notes the chief practical benefit of audio feedback: it reduces the overall time spent by lecturers in providing comments. While this paper is positive in favour of audio feedback throughout, it also discusses some potential challenges including anonymous marking – which affects the relationship between marker and student – and the fact that one size does not fit all, with different students preferring different types of feedback. The paper also attempts to provide practical tips to professionals wishing to use this method of feedback
    • …
    corecore