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Entropic Origin of the Growth of Relaxation Times in Simple Glassy Liquids
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Transitions between “glassy” local minima of a model free-
energy functional for a dense hard-sphere system are studied
numerically using a “microcanonical” Monte Carlo method
that enables us to obtain the transition probability as a func-
tion of the free energy and the Monte Carlo “time”. The
growth of the height of the effective free energy barrier with
density is found to be consistent with a Vogel-Fulcher law.
The dependence of the transition probability on time indi-
cates that this growth is primarily due to entropic effects
arising from the difficulty of finding low-free-energy saddle
points connecting glassy minima.
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The dynamic behavior of supercooled liquids near the
glass transition [1] is one of the most enigmatic problems
of condensed matter physics. The most dramatic fea-
ture of the dynamics near the glass transition in so-called
“fragile” systems [2] is an extremely rapid growth of the
relaxation time τ which is reasonably well-described by
the Vogel-Fulcher law [3], τ ∝ exp[C/(T − T0)], where
T0 < Tg, the conventionally defined glass transition tem-
perature at which the viscosity attains a value of 1013 P.
The apparent divergence of τ at T0 has led to specula-
tions about the possibility of a true thermodynamic tran-
sition at this temperature. This is also suggested by the
observation [4] that the temperature TK (the so-called
Kauzmann temperature) at which the entropy difference
between the supercooled liquid and the equilibrium crys-
talline solid extrapolates to zero is very close to T0. The
closeness of T0 and TK suggests that the growth of the
relaxation time near the glass transition is primarily en-
tropic in origin. Heuristic arguments that attempt to
relate the Vogel-Fulcher law to entropic effects have been
proposed by several authors [5,6]. However, we are not
aware of any calculation that provides an explicit demon-
stration of such effects in simple model liquids.

In this Letter, we describe the results of a numerical in-
vestigation that provides direct evidence for an entropic
origin of the growth of the relaxation time in a dense hard
sphere fluid near the glass transition. Our computations
are based on a model free energy functional [7] for the
hard sphere system. We use a novel “microcanonical”
Monte Carlo (MC) method to study transitions between
different “glassy” minima of a discretized version of this

free energy functional. We determine the probability of
transition from one minimum to another as a function of
the free energy increment ∆f (the excess free energy per
particle measured from that at the original minimum)
and MC “time” t. This allows us to define an effective
barrier height that depends weakly on t. We find that
the growth of this effective barrier height with increasing
density is consistent with a Vogel-Fulcher form appro-
priate for a hard-sphere system. Our numerical results
about how the dependence of the effective barrier height
on t changes as the density is increased indicate clearly
that the growth of the barrier height (and the conse-
quent growth of the relaxation time) is primarily due to
entropic effects arising from an increase in the difficulty
of finding low free-energy paths (“saddle points”) that
connect one glassy local minimum with another.

The free energy functional used in our study is of the
form proposed by Ramakrishnan and Yussouff [7]:

F [ρ] = Fl[ρ0] + kBT

[
∫

dr{ρ(r) ln(ρ(r)/ρ0) − δρ(r)}

− (1/2)

∫

dr

∫

dr′C(|r − r
′|)δρ(r)δρ(r′)

]

, (1)

where δρ(r) ≡ ρ(r) − ρ0 is the deviation of the time-
averaged local number density ρ(r) from its value ρ0 in
the uniform liquid state, Fl is the free energy of the uni-
form liquid, T is the temperature, and C(r) is the di-
rect pair correlation function [8] of the uniform liquid at
density ρ0. C(r) is expressed in terms of the dimension-
less density n∗ ≡ ρ0σ

3 (σ is the hard sphere diameter)
through the Percus-Yevick approximation [8] which is ex-
pected to be adequate if ρ0 is not very high.

The discretized version of this free energy functional
exhibits [9] a large number of “glassy” minima (local
minima of F at which the density is inhomogeneous but
aperiodic) for n∗ > n∗

f where n∗

f ≃ 0.85 is the density
at which equilibrium crystallization occurs. Numerical
studies [10,11] of Langevin equations appropriate for this
system show that the dynamic behavior is governed by
thermally activated transitions among these glassy min-
ima if n∗ exceeds a “crossover” value that is close to
0.96. The time scales for such transitions were estimated
from a standard MC method in Ref. [12] and found to
rapidly increase with increasing density. Here, we have
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used a different numerical method that is more efficient
than the canonical MC method and provides information
about the origin of the growth of the time scale of these
thermally activated transitions. The increase of this time
scale may be due to one or both of two factors: (a) an
increase of the height of the lowest free-energy barrier
that separates a glassy minimum from the others; and
(b) an increase of the difficulty in finding low-free-energy
paths to other minima. Considering the free energy func-
tional as an effective Hamiltonian for the system, these
two factors may be called “energetic” and “entropic” [13],
respectively. The canonical MC method does not provide
much information about the relative importance of these
two factors in the observed growth of the time scales.
As described below, the numerical method used in this
study allows us to distinguish between energetic and en-
tropic effects. It also allows us to follow the growth of the
barrier-crossing time scale over about ten decades, which
would not be possible in a canonical MC calculation.

We discretize our system on a cubic lattice of size L3

and mesh constant h with dimensionless density variables
defined as ρi ≡ ρ(ri)h

3. Periodic boundary conditions
are used and the constraint that the sum of the variables
ρi must be a constant N , the number of particles in the
sample, is enforced during the simulation. We define a
dimensionless free energy per particle, f [ρ], as:

f [ρ] = βF [ρ]/(n∗L3a3) (2)

where a is the ratio h/σ, and β = 1/kBT .
Our numerical method, which may be called “micro-

canonical” MC if the free energy functional is consid-
ered to be an effective Hamiltonian, involves the following
steps. Each run is started from a glassy local minimum of
the free energy. We choose a trial value of what we call
the free energy increment ∆f and then perform a MC
simulation in which we sweep the sites i of the lattice se-
quentially. At each step and site, we pick another site j
at random from the ones that lie within a distance σ from
the site i. We then attempt to change the values of ρi and
ρj to p(ρi +ρj) and (1−p)(ρi +ρj), where p is a random
number distributed uniformly in [0, 1]. The atempted
change is accepted only if the dimensionless free energy

after the change is less than Fmin + N∆f where Fmin is
the dimensionless free energy βF at the minimum where
the simulation is started. This procedure generates a
random sampling of configurations whose free energy lies
within N∆f of that of the glassy minimum under con-
sideration. The simulation proceeds up to a maximum
“time” tm, of MC steps per site. At regular intervals
along the evolution of the system, we use a minimiza-
tion procedure [9] to determine whether the system has
moved to the basin of attraction of a different local min-
imum of the free energy. Obviously, if N∆f is smaller
than the lowest free-energy barrier between the starting
minimum and any other minimum, the system remains

in the basin of attraction of the starting minimum. As
∆f is increased, one begins to find transitions to other
accessible minima, that is, minima that the system can
find within a time t ≤ tm, which are separated from the
initial one by a barrier of height less than N∆f . Repeat-
ing this procedure a number of times (typically 10-20)
for a fixed set of values of n∗, ∆f and tm, we obtain
P (n∗, ∆f, t), the probability of a transition to a different
minimum within time t for free energy increment ∆f ,
as the fraction of the number of runs in which a transi-
tion is found. This probability is calculated for a suitable
range of values of n∗, ∆f , and t, and the whole procedure
is repeated for several glassy minima of the free energy
(see below). We define a “critical” value, ∆fc(n

∗, t), of
the free energy increment as the value of ∆f for which
P (n∗, ∆f, t) = 0.5. Clearly, N∆fc represents an effective
barrier height for transitions to other local minima. This
is the quantity that we use to present our results.

We have used two sizes, L = 15 and L = 12. In the first
case we have taken a = 1/4.6 so that L and a are incom-
mensurate with a close-packed lattice and no crystalline
minimum of the free energy is found. The total number of
inhomogeneous minima is then about 10 and all of them
exhibit glassy structure as determined by the two-point
correlation function of the local density. The minima we
have used as our starting point in this case were also
used in Ref. [12]. These are the minima to which the
system moves [11] in the course of its time evolution un-
der Langevin dynamics [10] when it is started from the
uniform liquid state. For L = 12 we took a = 0.25 so
that the sample is commensurate. It admits a crystalline
minimum that has the lowest free energy for the values of
n∗ considered here. The number of glassy minima is sub-
stantially larger (about 30) in this sample. Out of those
we chose a few with structure similar to that of the min-
ima of the L = 15 sample. For both cases, the minima
found at lower densities were “followed” to higher densi-
ties by running the minimization program at the higher
density using the lower density configuration (which is
of course not a minimum at the higher density) as the
starting point. The values of tm are 15,000 for L = 15
and 8,000 for L = 12. The transition probability was
calculated at time intervals of 5,000 in the first case, and
2,000 in the second case. In both cases, the density range
covered was 0.94 ≤ n∗ ≤ 1.06. Higher values of n∗ were
not considered because the Percus-Yevick approximation
then becomes [8] inaccurate.

Typical results for P are shown in Fig.1 where data
for L = 12 and n∗ = 1.04 are plotted for four different
values of t. The value of ∆f was incremented in steps
of 0.05, which is also the estimated uncertainty in the
determination of ∆fc. The transition probability grows
from zero as ∆f is increased, and eventually saturates
at one for sufficiently large values of ∆f . For a fixed
value of ∆f , the transition probability increases as t is
increased: transitions to other minima are more likely
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if the system is allowed to explore a larger number of
configurations. Since P is an increasing function of both
∆f and t, ∆fc(n

∗, t) (the value of ∆f where P=0.5, as
defined above) decreases as t is increased. In agreement
with the previously observed [12] growth of the barrier-
crossing time scale with n∗, we find that ∆fc is an in-
creasing function of n∗.

The conclusion that entropic effects play a crucial role
in the growth of the effective height of the free energy bar-
riers stems from the observation that the t-dependence
of ∆fc becomes stronger as n∗ is increased (see Fig.2).
It is intuitively obvious that the t-dependence of ∆fc is
closely related to the probability of finding a path (“sad-
dle point”) that connects the starting minimum to a dif-
ferent one. If such paths were relatively easy to find,
then the transition probability would be insensitive to the
value of t as long as it is not very short. If, however, paths
to other minima are few, a large number of configurations
have to be explored before one of them is found. The t-
dependence of ∆fc would then be more pronounced and
extend to larger values of t. To make the idea more con-
crete, we ignore the correlations (which are short-range
in time) among the configurations generated in a MC run
and assume that they represent t independent samplings
of configurations with free energy less than Fmin +N∆f .
Let us also assume that the system does not return to
the basin of attraction of the starting minimum after a
transition to a different basin of attraction. We find that
a return to the original basin of attraction is indeed very
rare. The transition probability may then be estimated
as P (n∗, ∆f, t) = 1 − [1 − p(n∗, ∆f)]t ≃ 1 − exp(−tp),
where p(n∗, ∆f) ≪ 1 is the probability that a ran-
domly chosen configuration with βF ≤ Fmin + N∆f
belongs in the basin of attraction of a different mini-
mum. One expects p to be zero if ∆f ≤ ∆f0(n

∗) where
N∆f0 is the height of the lowest free energy barrier, and
p = g(n∗, ∆f −∆f0) for ∆f > ∆f0 where g(n∗, x) grows
continuously from zero as x is increased from zero. Com-
bining this with the definition of ∆fc, we obtain the re-
lation g(n∗, ∆fc(n

∗, t)−∆f0(n
∗)) = ln 2/t. Our observa-

tion that the difference ∆fc(n
∗, t1)−∆fc(n

∗, t2) for fixed
t1 < t2 increases with n∗ then leads to the conclusion that
the function g(n∗, x) decreases (i.e. the difficulty of find-
ing paths to other minima increases) as n∗ is increased
at fixed x.

The observed t-dependence of ∆fc for all values of n∗

and all the minima in our study is well-represented by

∆fc(n
∗, t) = ∆f0(n

∗) + c(n∗)t−α, (3)

with α in the range 0.25− 0.40. Typical fits to this form
with α = 0.35 for two minima with L = 15 and L = 12
are shown in Fig.2. The values of ∆f0 obtained from such
fits with a fixed value of α are nearly independent of n∗,
but exhibit a dependence on the value of α, varying be-
tween 0 and 0.5 for the L = 15 minimum, and between 1.3

and 1.5 for the L = 12 minimum of Fig.2. The quantity
c(n∗) increases with n∗. These results correspond to the
function g(n∗, x) having the form g(n∗, x) ∼ A(n∗)x1/α

with A(n∗) decreasing with increasing n∗. We conclude
from these observations that the growth of the effective
barrier height with increasing n∗ is primarily due to an
entropic mechanism associated with an increase of the
difficulty in finding low-lying saddle points that connect
different glassy local minimum of the free energy. This
conclusion is consistent with the canonical MC results
of Ref. [12] where we found that while the time scale of
transitions between minima increases dramatically with
n∗, the free energy increment at the transition point re-
mains essentially independent of n∗. This implies that
the probability of finding a path to other minima for a
fixed value of the free-energy increment decreases as n∗

is increased.
Our results for the dependence of ∆fc on n∗ are con-

sistent with the Vogel-Fulcher law [3] which assumes the
following form [14] for our system:

∆fc(n
∗) = a + b/(n∗

c − n∗), (4)

where a and b are constants and n∗

c is expected to be
close to the random close packing density n∗

rcp ≃ 1.23.
There is some ambiguity in trying to fit our data to this
form because our values of ∆fc depend weakly on the
time t. However, the value of n∗

c obtained from fits of
our data for ∆fc(n

∗, t) to Eq.(4) with fixed a is nearly
independent of t. This is consistent with the form of
Eq.(3) if a = ∆f0 , b ∝ t−α, and c ∝ 1/(n∗

c −n∗). ∆f0 is
indeed nearly independent of n∗, and the t-dependence
of b and the n∗-dependence of c are in agreement with
the other two conditions. For the L = 15 case, we can
fit the data for ∆fc at t = 15,000 to the form of Eq.(4)
with a = 0 (∆f0 = 0). The best fit, shown in Fig.3,
corresponds to n∗

c = 1.225, very close to the expected
result. The best fit to the L = 12 data with a ≃ 1.0
(the difference between the values of ∆f0 for the L = 12
and L = 15 minima is about 1.0) also yields a similar
value of n∗

c . So, we conclude that the observed growth of
the effective barrier height is consistent with the Vogel-
Fulcher form. The increase in the effective barrier height
as n∗ is increased from 0.94 to 1.06 is about 25kBT , cor-
responding to a growth of the characteristic time scale of
about ten orders of magnitude. Thus, the range of time
scales covered in our study is comparable to that used in
Vogel-Fulcher fits of experimental data, and much wider
than what can be achieved in standard MC or molecular
dynamics simulations.

In summary, our study shows that the density-
dependence of the characteristic time scale for transi-
tions between glassy local minima of the free energy of a
dense hard sphere system arises primarily from entropic
effects associated with the difficulty of finding low-lying
paths that connect such minima. The observed growth
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of the time scale is quantitatively consistent with the
Vogel-Fulcher form. To our knowledge, this is the first
explicit demonstration of entropic effects leading to a
Vogel-Fulcher-type growth of relaxation times in a simple
model liquid. The same behavior should occur in other
simple liquids where C(r) is similar [8].
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FIG. 1. The transition probability P (see text) as a func-
tion of the free-energy increment ∆f for four values of the
time t. The data shown are for a L = 12 minimum at n∗ =
1.04. The values of ∆fc are indicated by the filled circles.

FIG. 2. Plots of ∆fc, obtained for a L = 15 minimum,
against (t/1000)−0.35 for three values of n∗. The dashed lines
are the best straight-line fits. Similar plots for a L = 12
minimum are shown in the inset.

FIG. 3. The dependence of ∆fc(n
∗, t = 15000) on n∗ for L

= 15. The dashed line shows the best fit to a Vogel-Fulcher
form (see text).
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