33 research outputs found

    Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Light plays a key role in multiple plant developmental processes. It has been shown that root development is modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells. Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport. Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to be addressed. METHODOLOGY AND PRINCIPLE FINDINGS: Using laser confocal scanning microscopy, and physiological and molecular genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process. CONCLUSIONS AND SIGNIFICANCE: Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results, we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of auxin efflux carriers, PIN proteins, in response to the light environment

    The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways

    No full text
    The role of the Arabidopsis transcription factor LONG HYPOCOTYL 5 (HY5) in promoting photomorphogenic development has been extensively characterized. Although the current model for HY5 action largely explains its role in this process, it does not adequately address the root phenotype observed in hy5 mutants. In our search for common mechanisms underlying all hy5 traits, we found that they are partly the result of an altered balance of signaling through the plant hormones auxin and cytokinin. hy5 mutants are resistant to cytokinin application, and double mutant analyses indicate that a decrease in auxin signaling moderates hy5 phenotypes. Microarray analyses and semiquantitative RT-PCR indicate that two negative regulators of auxin signaling, AUXIN RESISTANT 2 (AXR2)/INDOLE ACETIC ACID 7 (IAA7) and SOLITARY ROOT (SLR)/IAA14, are underexpressed in hy5 mutants. The promoters of these genes contain a putative HY5 binding site, and in line with this observation, HY5 can bind to the promoter of AXR2 in vitro. Increased AXR2 expression in a hy5 background partially rescues the elongated hypocotyl phenotype. In summary, it appears that auxin signaling is elevated in hy5 mutants because HY5 promotes the expression of negative regulators of auxin signaling, thereby linking hormone and light signaling pathways
    corecore