
Influence of ground surface characteristics  
on the mean radiant temperature in urban 
areas 
Article 

Accepted Version 

Lindberg, F., Onomura, S. and Grimmond, C. S. B. (2016) 
Influence of ground surface characteristics on the mean 
radiant temperature in urban areas. International Journal of 
Biometeorology, 60 (9). pp. 14391452. ISSN 14321254 doi: 
https://doi.org/10.1007/s004840161135x Available at 
http://centaur.reading.ac.uk/58036/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1007/s004840161135x 

Publisher: Springer 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



Lindberg F, Onomura S, Grimmond CSB et al. (2016) Influence of ground surface characteristics on the mean radiant temperature in urban 

areas International Journal of Biometeorology doi: 10.1007/s00484-016-1135-x 

 

1 

Influence of ground surface characteristics on the mean radiant temperature in urban areas 

Fredrik Lindberg1, Shiho Onomura1, C.S.B. Grimmond2 

University of Gothenburg, Göteborg Urban Climate Group, Earth Science Centre, Box 460, SE-405 30 Gothenburg, Sweden 

University of Reading, Meteorology, UK 

Abstract 

The effect of variations in land cover on mean radiant surface temperature (Tmrt) is explored through a simple scheme 

developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface 

temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through 

variations in albedo for the different surfaces. The influence of surface materials on Tmrt is small compared to the effects 

of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction on Tmrt to reduce the radiant 

load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests 

that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it 

underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very 

different characteristics compared to an evaluation grass site, caused Tmrt to be underestimated. The implications of using 

high resolution (e.g. 15 minutes) temporal forcing data under partly cloudy conditions are demonstrated even for fairly 

proximal sites.   

 
Keywords: SOLWEIG; surface temperature; Gothenburg; London 

 

1            Introduction 

 Increasing attention is being directed to how urban planners can design, build and retrofit cities to improve outdoor 

thermal comfort conditions to enhance the health and well-being of urban citizens, i.e. to reduce heat and cold stress as 

well as prolong periods of comfortable conditions (see, for example, Müller et al. 2014 and Erell et al. 2014). 

 

 Mean radiant temperature (Tmrt) is one of the most important meteorological parameters governing the human energy 

balance and thermal comfort outdoors, especially during clear and calm summer days (Mayer and Höppe 1987). Tmrt is 

the net result of all short- and longwave radiation fluxes from the surroundings to which a human body is exposed. When 

compared to other variables influencing thermal comfort, such as air temperature (Ta) and humidity, Tmrt shows larger 

spatial variation over short distances (Ali Toudert and Mayer 2007; Lindberg et al. 2013). Comparison of  Ta and Tmrt in 

adjacent sunlit and shaded locations during warm and clear summer weather by Mayer et al. (2008) documenteed that 

differences in Tmrt could be as much as 37°C, whereas differences in Ta were only 1-2°C.  

 

Tmrt has been proposed as a better metric to analyze the impact of weather and climate on people’s health than air 

temperature or apparent temperature (Thorsson et al. 2014). Thus improving knowledge of how Tmrt varies within the 

urban environment is important. In this study, variations related to different weather conditions urban morphology and 

vegetation on radiative properties, and thus Tmrt, are explored. Insights into these variation and their controls are needed 

to more accurately identify thermal comfort risk areas and to inform appropriate measures to reduce heat stress. 

 

The relative importance of shortwave and longwave radiation fluxes on a human vary spatially and temporally in cities 

with season and urban density and morphology. For a standing man during clear, calm and warm weather situations, in 

Freiburg, Germany the short and longwave fluxes are of equal importance (Ali-Toudert and Mayer 2007). However, 

longwave fluxes become increasingly important in denser environments, with increased radiant fluxes from walls 

(Lindberg et al. 2013). The relation between shortwave and longwave radiant load changes through time as the incidence 

angle of shortwave radiation varies depending on day of year and latitude. The spatial variations of daytime Tmrt are 

chiefly influenced by shadow patterns, i.e. variations in direct shortwave radiation, affected by obstructing objects such 

as trees, buildings and general topography (Lindberg and Grimmond 2011b). Shadowing, primarily from trees and 

bushes, as a potential method to reduce daytime heat stress, is a relatively easy mitigation measure in urban development 

(Andersson-Sköld et al.  2015).  

 

Although thermal and radiative properties of surrounding surface materials (albedo, emissivity, thermal admittance etc.) 

could be an option to regulate the outdoor thermal environment, they usually have a minor effect. Local scale simulations 

(Erell et al. 2014) showed that although high-albedo surfaces (both canyon floor and walls) may reduce the air 

temperature to which pedestrians are exposed, the change in temperature has only a small effect on their thermal balance 

with the environment. Reduction in surface temperatures by increasing the albedo of urban surfaces, leading to a 

reduction in longwave radiation fluxes, is counterbalanced by increased reflection of shortwave radiation. Thus, the net 

effect is minor in terms of the thermal environment in outdoor urban settings. However, changes in materials will affect 

heat storage and indoor building temperatures and these effects may be significant (Erell et al. 2014). 

 

Tmrt can be accurately measured using pyranometers (shortwave) and pyrgeometers (longwave). This approach 

commonly uses six sensors (aligned for the four horizontally and vertically, from the four cardinal points (see Thorsson 
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et al. 2007, their Figure 2), along with information on body posture (sitting, standing etc.) and absorption coefficients of 

shortwave and longwave) radiation of the human body (Höppe 1992). However, the need for measurements in six 

directions makes it costly, spatially limited and difficult to implement in extensive measurement campaigns (Thorsson et 

al. 2007a). Simpler methods use a globe thermometer along with air temperature and wind speed observations 

(Nikolopoulou et al. 1999) but are also spatially constrained.  

 

Several models have been developed to derive Tmrt. One popular option is the 1D model, RayMan (Matzarakis et al. 

2007; Matzarakis et al. 2009). The model offers several estimation and input possibilities. An alternative is the SOlar and 

LongWave Environmental Irradiance Geometry (SOLWEIG) model (Lindberg et al. 2008, Lindberg and Grimmond 

2011b), a 2D radiation model for estimating radiation fluxes and thus Tmrt in urban environments. Another model, 

extensively used in urban climate and thermal comfort studies, is ENVI-met (Bruse and Fleer 1998). ENVI-met is a user-

friendly, three-dimensional micro climate computer model able to simulate the interactions between different urban 

surfaces, vegetation and the atmosphere at typical scales of 0.5 to 10 meters and at a maximum time step of 10 seconds. 

A model inter-comparison between the three models mentioned can be found in Chen et al. (2014).  

 

In this paper, the influence of micro scale ground surface types on radiation fluxes and Tmrt is explored. Observations on 

surface temperatures for different surfaces are considered and a simple land cover scheme is developed and evaluated 

using the SOLWEIG model (further developed here). Diurnal patterns of radiation fluxes and related Tmrt are also 

investigated. This study is part of a more extensive work where SOLWEIG will be incorporated into The Urban Multi-

scale Environmental Predictor (UMEP) a climate sensitive planning tool for architects, planners and researchers 

(Lindberg et al. 2015b). 

 

2      METHODS  

2.1   SOLWEIG  

The SOLWEIG model follows the same approach commonly adopted to observe Tmrt (as used, for example, by Höppe, 

1992), with shortwave and longwave radiation fluxes from six directions being individually calculated to derive Tmrt. The 

SOLWEIG-model is available as 2D and 1D versions. Evaluations of SOLWEIG (Lindberg and Grimmond 2011b, 

Lindberg et al. 2008, Chen et al. 2014, Lau et al. 2015) have been undertaken for a number of locations in e.g. 

Gothenburg, Freiburg, Kassel and Hong Kong. The model requires weather time-series at any time resolution (> 1 

minute) for ambient air temperature (Ta), relative air humidity (RH) , global (G) and diffuse (D) solar radiation, together 

with a digital surface model (DSM) and site geographical location (i.e. latitude, longitude, and altitude). As diffuse 

and/or direct (I) solar radiation are not commonly available, the model also allows calculation of D from G in 

conjunction with Ta and RH, using the Reindl et al. (1990) approach. Direct shortwave radiation on a surface 

perpendicular to the Sun is then estimated: 

𝐼 = (𝐺 − 𝐷)/ sin 𝜂  (1) 

where η is the Sun’s altitude angle above the horizon. Additional DSMs can be added to account for vegetation in the 

form of trees and bushes. Tmrt is usually calculated for a standing person, with the angular factors (F) specifying the 

proportion of radiation received from each direction set to 0.22 for east, west, north and south, and 0.06 for radiation 

fluxes from above and below (Fanger 1970). Absorption coefficients of shortwave (𝜉k) and longwave (ɛp) radiation for a 

human body are 0.7 and 0.97, respectively (Höppe 1992; VDI 1998). Albedo (α) and emissivity (ɛ) for buildings and 

vegetation are assumed to be the same and are set to 0.20 and 0.95, respectively. The transmissivity of shortwave and 

longwave radiation through foliated vegetation (τ) are 2 % and 0 %, respectively (Lindberg and Grimmond 2011b; 

Konarska et al. 2014). Neither wind fields nor variations in building wall materials are considered in the current version 

of the model.  

 

In order to determine Tmrt, (units: K) the mean radiant flux density (R) is calculated, which is defined as the sum of all 

fields of long (Li) and shortwave (Ki) radiation in three dimensions (i=1-6), together with the angular (F) and absorption 

factors of an individual (VDI 1994):  

𝑅 = 𝜉𝑘 ∑ 𝐾𝑖𝐹𝑖 + 𝜀𝑝 ∑ 𝐿𝑖𝐹𝑖
6
𝑖=1

6
𝑖=1    (2) 

From R the Tmrt is calculated from Stefan Boltzmann’s law, (see eq. 2 in Lindberg et al. 2008).  The incoming shortwave 

radiation (K↓) for a grid cell (x, y) is a function of D, I and G, as well as view factors (Ψ). For clarity, the equations are 

written without the spatial subscript: 

𝐾↓ = 𝐼[𝑆𝑏 − (1 − 𝑆𝑣)(1 − 𝜏)] sin 𝜂 + 𝐷[Ψ𝑠𝑘𝑦 𝑏 − (1 − Ψ𝑠𝑘𝑦 𝑣)(1 − 𝜏)] +  

  𝛼𝑤 [1 − (Ψ𝑠𝑘𝑦 𝑏 − (1 − Ψ𝑠𝑘𝑦 𝑣)(1 − 𝜏))] (𝐺(1 − 𝑓𝑠) + 𝐷𝑓𝑠) (3) 

where S accounts for shadow as a  Boolean value (presence = 0 or absence =1), for buildings (subscript b) and vegetation 

(v); the subscripts associated with Ψ indicate what aspects are being accounted for (e.g. sky seen by building); and αw is 

the bulk albedo of walls. For a detailed description of how shadows and sky view factors are generated using raster 

DSMs, see Lindberg and Grimmond (2010) and Lindberg and Grimmond (2011b). fs is the fraction of wall that is 
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shadowed (Lindberg et al. 2008). The first and second terms on the right-hand side of (3) represent direct and diffuse 

radiation fluxes, respectively. The third term in (3) is a simplified representation of reflected radiation.  

Incoming longwave radiation (L↓) is estimated using an equation modified from Jonsson et al. (2006): 

𝐿↓ = (Ψ𝑠𝑘𝑦 𝑏 + Ψ𝑠𝑘𝑦 𝑣 − 1)𝜀𝑠𝑘𝑦𝜎𝑇𝑎
4 + (2 − Ψ𝑠𝑘𝑦 𝑣 − Ψ 𝑠𝑘𝑦 𝑣𝑏)𝜀𝑤𝑎𝑙𝑙𝜎𝑇𝑎

4 + 

 (Ψ𝑠𝑘𝑦 𝑣𝑏 − Ψ𝑠𝑘𝑦 𝑏)𝜀𝑤𝑎𝑙𝑙𝜎𝑇𝑠
4 + (2 − Ψ𝑠𝑘𝑦 𝑏 − Ψ𝑠𝑘𝑦 𝑣)(1 − 𝜀𝑤𝑎𝑙𝑙)𝜀𝑠𝑘𝑦𝜎𝑇𝑎

4 (4) 

where εsky and εwall are the sky and wall emissivities and Ts is the average surface temperature of building walls and the 

ground. Ta is ambient air temperature and σ is the Stefan Boltzmann constant. All temperatures are in Kelvin. Estimation 

of Ts is described in Section 2.2. The first term on the right-hand side is the direct sky longwave radiation, the second is 

the radiation originating from vegetation, the third is the wall radiation and the fourth is the reflected sky radiation. For a 

detailed description of the estimation of εsky, as well as how L↓ is modified based on cloud cover, see Lindberg et al. 

(2008). 

 

The shortwave radiation from the four cardinal points (K→) is estimated as follows (exemplified by the easterly 

component, subscript E): 

If the sun azimuth angle (θ) is θ>0° and θ≤180°: 

𝐾→𝐸 = 𝐼[𝑆𝑏 − (1 − 𝑆 𝑣)(1 − 𝜏)] cos 𝜂 sin 𝜗 +  (
𝐷[1 − 𝑤] +

𝛼𝑤𝑎𝑙𝑙[𝐺𝑤(1 − 𝑓𝑠) + 𝐷𝑤𝑓𝑠] + 𝐾↑𝐸
) × 0.5   (5) 

otherwise: 

𝐾→𝐸 = (
𝐷[1 − 𝑤] +

𝛼𝑤𝑎𝑙𝑙[𝑤(𝐺(1 − 𝑓𝑠) + 𝐷𝑓𝑠)] + 𝐾↑𝐸
) × 0.5   (6) 

 

The integrative angular weighting factors (w), explained in detail in Lindberg et al. (2008) and Lindberg and Grimmond 

(2011b), represents the amount of radiation originating from either building walls, vegetation or sky, as well as all 

reflecting surfaces seen by a sensor perpendicular to the wall thus w, as used in eq. 5 and 6 requires the angular factor for 

buildings (wEwall) and vegetation (wEveg,): 

𝑤 = 𝑤𝐸𝑤𝑎𝑙𝑙 + 𝑤𝐸𝑣𝑒𝑔(1 − 𝜏)  (7) 

K↑E represents outgoing shortwave radiation (see Section 2.2). For all radiation components except for the direct radiation 

from the Sun, only half of the hemisphere is taken into account hence, all are multiplied by 0.5. 

The longwave radiation from each of the cardinal points are estimated using the following (exemplified again for the 

easterly component): 

𝐿→𝐸_𝑠𝑘𝑦 = (Ψ𝑠𝑘𝑦 𝐸𝑏 + Ψ𝑠𝑘𝑦 𝐸𝑣 − 1)𝜀𝑠𝑘𝑦𝜎𝑇𝑎
4𝑤𝐸𝑠𝑘𝑦 × 0.5  (8)  

𝐿→𝐸_𝑣𝑒𝑔 = 𝜀𝑤𝑎𝑙𝑙𝜎𝑇𝑣𝑒𝑔
4 𝑤𝐸𝑣𝑒𝑔 × 0.5   (9) 

𝐿→𝐸_𝑔𝑟𝑜𝑢𝑛𝑑 = 𝐿↑𝐸 × 0.5    (10) 

𝐿→𝐸_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 = (𝐿↓ + 𝐿↑)𝑤𝐸𝑟𝑒𝑓𝑙(1 − 𝜀𝑤𝑎𝑙𝑙) × 0.5  (11) 

if θ>0° and θ≤180°: 

𝐿→𝐸_𝑠𝑢𝑛𝑙𝑖𝑡 = 𝜀𝑤𝑎𝑙𝑙𝜎(𝑇𝑎
4 + 𝑇𝑤𝑎𝑙𝑙

4 sin 𝜗)𝑤𝐸𝑤𝑎𝑙𝑙(1 − 𝑓𝑠 𝑤) cos 𝜂 × 0.5 (12) 

𝐿→𝐸_𝑠ℎ𝑎𝑑𝑜𝑤 = 𝜀𝑤𝑎𝑙𝑙𝜎𝑇𝑎
4𝑤𝐸𝑤𝑎𝑙𝑙𝑓𝑠 × 0.5   (13) 

otherwise: 
𝐿→𝐸_𝑆𝑈𝑁 = 0     (14) 
𝐿→𝐸_𝑆𝐻𝐴𝐷𝑂𝑊 = 𝜀𝑤𝑎𝑙𝑙𝜎𝑇𝑎

4𝑤𝐸𝑤𝑎𝑙𝑙 × 0.5   (15) 
L↑E represents outgoing shortwave radiation (see Section 2.2) 
 
2.2   Ground cover scheme 

The new ground cover scheme modifies the outgoing shortwave and longwave fluxes. The outgoing shortwave radiation 

for each pixel within a model domain is estimated as: 

𝐾↑ = Ψ𝑔𝑆𝑢𝑛𝑙𝑖𝑡(𝛼)𝐼 sin 𝜂 + Ψ𝑔𝐴𝑙𝑙(𝛼) (
𝐷[Ψ𝑠𝑘𝑦 𝑏 − (1 − Ψ𝑠𝑘𝑦 𝑣)(1 − 𝜏)] +

𝛼𝑤 [1 − (Ψ𝑠𝑘𝑦 𝑏 − (1 − Ψ𝑠𝑘𝑦 𝑣)(1 − 𝜏))] (𝐺(1 − 𝑓𝑠) + 𝐷𝑓𝑠)
) (16) 

where ΨgSunlit(α) is the albedo dependent ground view factor for sunlit surfaces influencing a single reflection of direct 

radiation from the ground. ΨgAll(α) is the albedo dependent ground view factor including both sunlit and shadowed areas. 

Previously, Ψg was dependent only on the horizontal shadow patterns and was a measure with respect to the amount of 

sunlit area on the ground seen at a point above the ground. This height (z=1.1 m) represents the centre of mass of a 

standing human but can be altered accordingly. When Ψg = 1, only sunlit surfaces are seen from that specific pixel. Ψg 

use the simple relation that half the radiative surface influence originates from an area with a radius equal to the ‘sensor’ 

height (Schmid et al. 1991). For each pixel a search is conducted at 20° intervals between 0° and 359°. In order not to 

increase the computational time too much, the maximum search distance is set to 20 times the height of interest (e.g. 22 

m when z=1.1 m). The major difference from previous versions of SOLWEIG (from v2.0), is that the ground view factor 
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(Ψg(α)) is now affected by pixel-wise albedo variations. Albedo values for each pixel are based on the ground cover type 

specified. This information is included in the new grid with the same pixel resolution and extent as the ground and 

building DSM. The shadow casting algorithm (Ratti and Richens 1999; Ratti and Richens 2004) now includes detailed 

information about the sunlit fractions on building walls (Lindberg et al. 2015a). This impacts the estimation of ΨgSunlit(α) 

when ground pixels located closer than the maximum search distance to a wall in any direction are taken into account. 

The land cover can have different material types (e.g. Figure 1c has four) each with its own albedo (Table 1). The 

shadow patterns on the ground (Figure 1b) originate from buildings, topography, trees and bushes within the model 

domain (see Lindberg and Grimmond 2011 for details). Figure 1d shows ΨgSunlit(α) for the same time. The strong influence 

of shadow patterns on ΨgSunlit(α) is evident. The impact of the various land cover types is relatively small except for the 

water surface, with the lowest albedo (α=0.05). Also of note is the strong contrast in between nearby pixels, as expected 

from the Schmid et al. (1991). The ΨgAll(α), (Figure 1e) resembles strongly  the original land cover image in Figure 1c. 

What is particularly evident is the influence of the water body to adjacent areas (lower part of the image). The resulting 

spatial variations of K↑ (Figure 1f) are mainly caused by the shadow patterns, whereas the variations in surface cover 

have a minor effect. As SOLWEIG is developed to estimate Tmrt at ground level, where people are, building roof pixels 

are not included in the ground view factors calculated. Instead one single albedo value is used at roof level. Nevertheless, 

Tmrt are roof level is still calculated. 

 

The longwave radiation fluxes throughout the model domain are estimated according to: 

𝐿↑ = Ψ𝑔 [𝜀𝑔𝑟𝑜𝑢𝑛𝑑(𝑖)𝜎 (𝑇𝑎 + (𝑆𝑏 − (1 − 𝑆 𝑣)(1 − 𝜏))(𝑇𝑠 − 𝑇𝑎))
4

]  (17) 

where εground(i) is the emissivity of the specific land cover (Figure 1c and Table 1) and Ts is the surface temperature for 

each land cover type following Bogren et al. (2000). They related surface temperature on sun-exposed surfaces based on 

simple linear relations between maximum solar elevation and maximum difference between Ta and Ts assessed under 

clear day conditions (Lindberg et al. 2008). Based on ground cover type, the maximum difference between surface and 

air temperature (Tdiffmax) is considered to occur sometime after the maximum solar elevation is reached (see Section 2.3, 

Table 1). Ts for a clear day is assumed to be sinusoidal, where the amplitude and initial morning values of Ts are derived 

from the linear relation presented in Section 2.3 (see Ts/ηmax; Table 1). The period of the sinusoidal equation for a 

particular day of the year is determined based on the time between sunrise of the day of interest and time of Tdiffmax. For 

non-clear model runs, Tdiffmax is reduced by the Clearness Index (Crawford and Duchon 1999) at the ground surface as 

explained in Lindberg et al. (2008). When ground surface pixels change from sun exposed to shadowed, the new surface 

temperature value would not instantly be equal to Ta but instead, a linear decrease where surface temperature is assumed 

to be 75% of the calculated sun-exposed surface temperature after 60 minutes. If a pixel is shadowed for two sequential 

hours (120 min), Ts is set to Ta. This approach is adopted based on the thermal properties of ground surfaces and the 

gradual temperature drop evident when a surface location becomes shadowed. Similarly, a gradual temperature rise is 

evident when a given pixel change from shadowed into a sun-exposed area. The surface temperature of water surfaces is 

derived from a diurnal average air temperature for the specific day of interest. The outgoing longwave radiation for the 

same model domain, time and location (Gothenburg, Sweden, at 2 pm on the 26th of July, 2006) is shown in Figure 2a. 

The shadow patterns (Figure 1b) have the main influence on the outgoing longwave fluxes, but compared to K↑, the 

surface materials have a large impact on the spatial variations of L↑ (compare Figure 1c and 1f). Notable is that the 

highest values of L↑ are found near sunlit south-facing walls.  

 

The outgoing radiation included in the derivation of radiation fluxes from the cardinal points (e.g. K↑E and L↑E) uses the 

same concepts as described above. The difference is that radiation flux from a cardinal point (e.g. East) should only 

include ground pixels located east of a certain point of interest. For example, the easterly component only incorporates 

pixels that fall within 180° and 360° from a pixel where K↑E and L↑E are calculated. Although the shortwave radiation for 

the southerly (Figure 2b) and the northerly (Figure 2c) components are similar, clear differences are evident, such as near 

the water body in the lower part of the images.  

 

By inserting the 12 components of radiative fluxes into Eq. 2, Tmrt is derived (Figure 2d). The shadow patterns are the 

dominant feature affecting the spatial variations of Tmrt; the ground cover contributes to a much lesser extent (see Section 

4). Even though the direct solar radiation is high (I=728.3 W m-2), for the hour considered (Figures 1 and 2) the sky is not 

totally clear (G=766.1 W m-2 and D=194.8 W m-2). Therefore the warmest areas close to sunlit walls found during clear 

sky conditions cannot be identified in Figure 2d. Similar results were documented in (Lindberg et al. 2013).  

 

2.3   Surface temperature parameterisation 

Measurements of surface temperatures for two different types of surfaces (short grass and dark-coloured asphalt) were 

conducted to obtain relations between solar elevation and Tdiffmax for the Ts estimation of the surfaces (see section 2.2). 

The measurement site (57°46'N 11°51'E) in an open field adjacent to Gothenburg City Airport were conducted from 1st 

July 2011 – 31st December 2012. Infrared radiometers (Apogee, SI-111), with an accuracy of 0.2°C between -20 and 
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65°C were located 0.5 m above the ground surfaces, looking vertically downward. The grass was cut about every three 

weeks from April to October. The soil is clay-rich with very high water retention. Air temperature and relative humidity 

were obtained from the meteorological station at the airport. Global radiation and air pressure were observed at the 

Department of Earth Sciences, the University of Gothenburg roof-top meteorological station 12 km south-east of the 

airport. To select clear and sunny days, the clearness index of the sky was calculated as the ratio of the measured solar 

irradiance to the clear-sky irradiance based on the Crawford and Duchon (1999) method using air temperature and 

relative humidity. The method was modified by Lindberg et al. (2008) to correct for the underestimation of the clearness 

index when the altitude of the sun is low. Clear-sky conditions were defined as clearness index ≥ 0.9. Tdiffmax was 

calculated as the maximum difference between surface and air temperature (N=71).  

 

Analysis of the timing of Tdiffmax for the different surfaces (not shown) revealed the most frequent occurrence of Tdiffmax for 

asphalt and grass occurred at 3 pm and 2 pm (local time), respectively. These occurrences were also incorporated as a 

parameterisation variable in the new land cover scheme i.e. when the sinusoidal temperature wave has its maximum. 

Tdiffmax increases with higher ηmax at different rates for asphalt and grass (Figure 3). The high coefficient of determination 

for the asphalt surface (R2=0.93), compared to the grass surface (R2=0.67), can be explained by the more dynamic 

biophysical properties of the grass surface modifying the surface properties, e.g. length of grass, soil moisture etc. Linear 

regression analysis provides Tdiffmax/ηmax = 0.59 for asphalt, which is larger than for cobble stones (Lindberg et al. 2008) 

(Table 1) and 0.21 for grass. The intercept of Tdiffmax (Tstart) for asphalt is -10.12°C, which is much smaller than that for 

cobble stones, while Tstart for grass is -3.38°C.  

 

2.4   Model evaluation data  

To evaluate the new land cover scheme in SOLWEIG, data were collected in the Barbican Estate in London, UK in the 

summer of 2014. The Barbican Complex is a prominent example of British brutalist architecture and consists of three 

tower blocks (42 storeys and 123 metres high) and 13 terrace blocks (8 storeys and 35 metres high). Diurnal observations 

were undertaken at two locations selected based on differences in surface cover within the estate. Nocturnal observations 

of 3D radiation fluxes are extremely rare (see the exception for one diurnal cycle of Ali-Toudert and Mayer 2007). 

Observations were taken at a well maintained grass surface in Thomas More Residents’ garden (Site 1 in Figure 4b) and 

an elevated playground belonging to the City of London School for Girls (Site 2 in Figure 4b) (referred to hereafter as the 

podium). The garden soil is a silty loam with a relatively high sand content. The playground (podium) is covered with 

dark tiles and underneath is a school lecture hall. The three tower blocks are located north of the two sites. The 

vegetation is almost exclusively deciduous trees and bushes. The spatial elevation data used as input originated from a 

gridded dataset derived from LiDAR scanning conducted on behalf of the Greater London Authority (GLA). The original 

gridded dataset consisted of all objects, including both buildings and vegetation. To derive DSM, CDSM and TDSM 

(Trunk zone Digital Surface Model) the techniques as described in Lindberg and Grimmond (2011a) were used (Figure 

4a). The 651 by 601 grid point model domain is has a spatial resolution of 1 m. The land cover data were extracted from 

the OS MasterMap® Topography Layer (Ordnance Survey 2010). The garden site was surrounded by grass and the 

podium consisted of dark red tiles and was classified as asphalt in the model evaluation.  

 

The meteorological forcing data are from a climate station on the roof of the Strand Campus at King’s College London, 

1700 m WSW of the study area (see e.g. Kotthaus and Grimmond 2014). Air temperature and humidity data were 

collected using a Vaisala WXT520 and the global and diffuse radiation using a SPN1 Sunshine pyranometer (Delta-T 

Devices). The mobile station, located at  the two Barbican sites (Figure 4b), had three net radiometers (Kipp & Zonen, 

CNR 1) to measure the 3-d radiation fields (Thorsson et al. 2007a). The sensors were oriented to measure shortwave and 

longwave radiation fluxes from the four cardinal points, as well as parallel to the ground surface (incoming and 

outgoing).  An Apogee infrared temperature sensor directed downwards measured surface temperature. A grey globe 

thermometer as described in Thorsson et al. (2007a) measured globe temperature and a Rotronic HydroClip2 (HC2-S3) 

air temperature and relative humidity. The two sites were chosen with the expectation that different ground cover would 

have large effects on the observed radiative fluxes and Tmrt. For model evaluation, data from integral radiation 

measurements within the model domain were used. Measurements were taken over 4 days at the grass site (SITE1 in 

Figure 4b) and 6 days at (SITE2 in Figure 4b) site in summer of 2014. All data were averaged to 15 minute intervals 

(sample rate 5 sec), the resolution of model runs. Unfavourable weather and technical issues with sensors resulted in the 

availability of 15 min data for the evaluation dataset of 441 data points (78.5% of the total). 

 

3 RESULTS AND DISCUSSION 

3.1   The influence of ground cover on Tmrt 

 With SOLWEIG, insights with respect to ground cover on the radiant fluxes as well as Tmrt are now possible. The model 

has also been developed as a simplified version, SOLWEIG1D (Lindberg 2012). The latter can be used to calculate 

radiation fluxes and Tmrt for a generic sunlit location within the urban environment. The simplified version has a single, 

fixed, user-specified SVF and the location is assumed to be sunlit during the daytime hours. Realistically, (when SVF<1) 

surrounding objects block the sun at certain times of the day and year when SOLWEIG1D was run with the same settings 
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(Section 2). Figure 5 shows the differences in surface temperature of different ground surfaces for a location in 

Gothenburg (Sweden) when fully sunlit with a SVF set to 0.60. This example day is a clear summer day with very low 

diffuse shortwave radiation (approx. 104 W m-2 at noon), and high direct component on a surface perpendicular to the 

Sun (878 W m-2 at noon) (Figure 5, left). The evolution of daytime surface temperatures varies between 31.6°C (grass) 

and 45.6°C (dark asphalt) for the sunlit locations at 2 pm (Figure 5, middle). A shadowed location follows same 

evolution of air temperature during day, reaching a maximum of 23.5°C.  

 

With respect to differences in Tmrt (Figure 5, right) over the surface materials included the ground cover scheme 

considered, the largest discrepancies from the original model are found for the grass surface (-5.2°C at 4 pm). The 

differences between the cobble stone and dark asphalt are smaller (1.5°C at 4 pm). The variation of Tmrt over different 

ground surfaces at sunlit locations are very small compared to a shadowed location (-38.2°C at 4 pm). This large 

difference is well known (Ali-Toudert and Mayer 2007; Pearlmutter et al. 2007; Krüger et al. 2011) and attributed 

primarily to the absence of the direct shortwave component but also the reduction of ground surface temperatures and 

thus outgoing longwave radiation fluxes.   

 

A simple approach is taken to estimate water temperature that could be modified based on time of year, water volume, 

movement of water etc. Future versions will address this (e.g. following Cluis 1972). Nevertheless, given the radiation 

fluxes seem only to have a small effect on the resulting Tmrt, the simple estimation of water temperature is considered 

acceptable. Moreover, as the simulations of ambient air temperature are not spatially variable across the model domain, 

the water temperature does not influence air temperature. 

 

3.2   Observations and model evaluation of Tmrt in a complex urban environment 

To evaluate the model the Barbican (section 2.4) observations were used. Incoming and outgoing radiation fluxes as well 

as Tmrt on the Barbican podium and in the garden are shown in Figure 6 and Figure 7, respectively. The shortwave fluxes 

are influenced by the shadows as well as the albedo of the surrounding surfaces (Fig 6a, 8a). The high accuracy and 

precision of the surface data used are evident, for example the morning of 11 July on the podium, when the timing of 

observed and modelled incoming shortwave radiation affected by shadowing is almost identical (Fig 6a). With forcing 

data for model runs from 1 km away (Section 2.4), the difference in cloudiness are apparent. For the podium site, this is 

seen frequently in the afternoon of the 11 July and thereafter (Fig 6). When totally overcast (10 July), the discrepancies 

due to cloudiness between the two sites are not seen. Similar patterns are seen for the garden evaluation (Fig 7), 

especially for 16 July where the differences at times (e.g. before noon) are very large. The albedo used for the podium 

surface (Table 1) resulted in a minor overestimation of outgoing shortwave radiation, whereas the value for the grass 

surface gave a small underestimation. However, as the outgoing shortwave radiation fluxes are very small compared to 

the other fluxes, the model is not particularly sensitive to albedo values.  

 

Incoming longwave radiation fluxes (Ldown) are not impacted by the modification (eq. 4). A clear pattern is evident where 

cloudiness (incoming shortwave radiation) affects the variability of Ldown. To estimate Ldown at night, a parameterisation 

of cloudiness is implemented (Lindberg and Grimmond 2011b) to estimate incoming long-wave radiation fluxes. Here, 

the concept from Offerle et al. (2003) is used where cloudiness up to midnight is taken from clearness index calculations 

from the last hour on the day (i.e. just before sunset). The cloudiness after midnight is taken from clearness index values 

the first hour of the next day (i.e. just after sunrise). Nevertheless, the levels of Ldown are estimated relatively well. As 

reported by Jonsson et al. (2006), the clear-sky formula developed by Prata (1996), overestimates the sky emissivity 

during daytime by 0.04. This is not accounted for in this study but can be by implemented by future users of the model 

(see Section 3.3). The general adjustment of Ldown by 25 W m-2 (Lindberg et al. 2008) was removed, from SOLWEIG 

version 2015a, as this reduction has no physical explanation. The outgoing longwave radiation fluxes (Lup) are the fluxes 

that are affected the most by the new equations. As seen in Figure 6b, Lup at the podium shows a great improvement with 

respect to the rise of Lup during the morning hours (e.g. 11th and 13th of July). For example, the difference between 

observed and modelled is reduced from 71 to 5 W m-2 at 2 pm on the 13 July. However, the afternoon reduction of Lup 

due to cloudiness is not captured equally well (e.g. 60 W m-2 at 6 pm on 13 July). The same reduction is captured better 

for the grass surface in the garden (Fig 7) where discrepancies between observed and modelled values are around 13 W 

m-2. This difference in reduction between the two sites is probably due to the heat storage capabilities of the two surfaces, 

as well as the fact that the podium is situated on a roof and probably affected by the underlying lecture hall. This can also 

be seen throughout the night (Fig 6), when the observed Lup is considerably higher than modelled Lup. This discrepancy is 

considerably smaller in the garden, probably due both to differences in heat storage capabilities as well as its location on 

the ground (i.e. no underlying indoor environment). Daytime Lup in the garden is underestimated in the model. This is a 

consequence of the difference in grass surfaces between the parameterisation site in Gothenburg and the grass surface in 

the garden, both with respect to levels of maintenance, soil type and soil moisture availability during the observations in 

London. The largest difference between modelled and observed Lup is found on the 16th of July. Sometimes the grass in 
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the garden shows higher surface temperature and Lup than the cobble stone surface used in the original SOLWEIG model. 

However, these large differences which (> 600 W m-2), are related more to differences in Kdown between the forcing data 

site and the observation site. Nevertheless, the underestimation of Lup is evident on the other observation days (e.g. 8th of 

July). Thus, based on the observations made in the garden, maintained and unmaintained grass surface have different set 

of parameters. This result suggests that introducing highly maintained grass surfaces in the urban environment will have 

a very small effect on reducing Tmrt during heat waves, for example, when these surfaces in general may be dried out and 

very warm. 

 

In SOLWEIG, the nocturnal surface temperature of ground and walls are set equal to air temperature. This approximation 

seems to be inaccurate for the podium. However, estimating surface temperature and hence Lup on a roof is very complex 

and a much more complex surface temperature scheme would be needed such as, for example, the Town Energy Balance 

model (TEB) (Masson 2000) or a building energy model. However, these models are designed to work at the local-scale, 

not micro-scale that is of interest here. This would slow down the calculations considerably since calculations would 

need to be performed for every time step and pixel. In modelling schemes such as TEB, only one calculation is 

performed every time step and for each facet (roof, wall and ground). One possibility would be not to do a pixel wise 

surface temperature estimation but to consider a number of general surfaces (e.g. shaded/sunlit asphalt, shaded/sunlit 

grass) etc. Another possibility would be to use a 3D computationally fluid dynamics approach such as the ENVI-Met 

model (Bruse and Fleer 1998) which will increase computation complexity dramatically. The advantage of using the 

simple surface temperature scheme in SOLWEIG makes it possible to examine micro-scale radiation fluxes at pedestrian 

level for relatively extensive areas.  

 

The outgoing radiative fluxes also, to a small extent, affect the fluxes from the cardinal points (not shown). When the 

radiation fluxes from the four cardinal points are estimated, a portion of the ground is not accounted for. As only 20 

times of z (1.1 m) is searched in each direction, the portion of the ground furthest away from the point of interest is not 

accounted for. However, this portion of field of view is very small and only accounts for about 3.3 %. Nevertheless, this 

area is almost perpendicular to the surface considered and might have a small effect on the total flux from the cardinal 

points.  

 

By combining the radiation fluxes, Tmrt can be calculated. The calculated Tmrt on the podium compares very well for 

sunlit conditions (Figure 8), whereas shadowed and nocturnal values (maximum difference up to 10°C during night) are 

underestimated relative to the observations, as the simplification of setting surface temperature equal to air temperature 

result in an underestimation of Lup (Figure 6). Tmrt in the garden is underestimated during clear sky conditions, as the 

different properties of the grass surfaces affecting Lup are evident (Figure 7). The 15 min resolution sometimes results in 

very large discrepancies between the forcing of Kdown at the Strand Campus, King’s College London and the observed 

Kdown in the Barbican Estate. This makes it difficult to evaluate the land cover scheme in detail. This is most evident on 

the 16th of July in the garden where Tmrt is underestimated. This also contributes to the large scatter evident in Figure 8. 

Tmrt observed from the more simple method using just a globe temperature, air temperature and wind speed observations 

(Nikolopoulou et al. 1999; Thorsson et al. 2007a) has very good performance when compared to the integral six-direction 

observations (R2=0.96, Slope=1.001, Intercept=-1.3 K).  

3.3   Model accessibility through user-friendly interfaces 

Users can apply the SOLWEIG model via a graphical user interface (GUI) exploiting the Matlab compiler runtime 

environment. This is freely available for download (http://gvc.gu.se/english/research/climate/urban-climate). It will also 

be incorporated into the Urban Multi-scale Environmental Predictor (UMEP), a climate service tool, designed for 

researchers, architects and urban planners (Lindberg et al. 2015b). This tool can be used for a variety of applications 

related to outdoor thermal comfort, urban energy consumption, climate change mitigation etc. UMEP consists of a 

coupled modelling system which combines “state of the art” 1D and 2D models related to the processes essential for 

scale independent urban climate estimations. UMEP is a community, open source model, where users can contribute as 

well as extend the tool to improve modelling capabilities. This is freely available for download 

(https://bitbucket.org/fredrik_ucg/umep). A major feature is the ability for a user to interact with spatial information to 

determine model parameters. The spatial data across a range of scales and sources are accessed through QGIS (QGIS 

Development Team, 2015) - a cross-platform, free, open source desktop geographic information systems (GIS) 

application - that provides data viewing, editing, and analysis capabilities. QGIS is both extendable by plugins plus 

reducible to only essential core features needed. 

 

4    CONCLUSIONS AND FUTURE DEVELOPMENTS 
The effect of variations in land surface cover on Tmrt is explored for three cover types within the SOLWEIG model. 

Outgoing longwave radiation is parameterised (using near surface temperature observations for grass and asphalt 

surfaces), and outgoing shortwave radiation now allows variations in albedo for the different surfaces. Improvements to 

the longwave radiation are also included. The influence of land cover on Tmrt is small (about 5°C) compared to 

shadowing (about 30°C). The results suggest that altering of ground surface materials is not as an effective measure as 
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shadowing to reduce the radiant load during heat-wave episodes. Nevertheless, altering ground surface materials could 

contribute to a significant reduction on Tmrt in areas where shadowing is not an option.  

 

Evaluation of the land cover scheme shows that despite its simplicity, it can simulate the outgoing fluxes well, especially 

for sunny conditions. Underestimations are evident at night and for shadowed locations. The grass surface used for the 

parameterisation had very different characteristics compared to the grass surface where the evaluation observations were 

made, which probably explains the underestimation of Tmrt over that grass surface. The implications of using 15 min 

temporal data is demonstrated for partly cloudy conditions  for a situation with only a relatively short distance between 

the location of the forcing data of incoming shortwave radiation and evaluation data (up to 600 W m-2 difference).  

 

Further developments needed include improvements of nocturnal estimations of Tmrt as well as inclusion of a simple 

water temperature scheme. Furthermore, promising work (Holmer et al. 2015) to eliminate the fact that the formula by 

Höppe (1992) describes the human shape as a box and not a cylinder (as noted by Kántor et al. 2014) is currently being 

developed. This assumption has resulted in some peculiar features noted in studies of Tmrt such as a local minimum at 

noon (e.g. Thorsson et al. 2007; Kántor et al. 2014). 
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Table 1. Characteristics for the different land cover types used in this study. The three last columns are derived from 

observation. Emissivity and albedo values are from Oke (1987). See text for further explanation. 

 Emissivity 

(ɛ) 
Albedo (α) Ts / ηmax 

(°C) 

Tstart 

(°C) 

Time of Tdiffmax 

(Local time, h) 

Asphalt 0.95 0.18 0.59 -10.12 15 

Cobble stones (Lindberg et al. 

2008) 

0.95 0.20 0.37 -3.41 14 

Grass  0.94 0.16 0.21 -3.38 14 

Water 0.98 0.05 0.00 0.00 NA 
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Figure 1. Example grids used to estimate outgoing shortwave radiation. a) digital surface models (DSM and CDSM), b) shadow 

patterns at 1 pm 26 July 2006 in Gothenburg (Sweden), c) land cover, d) albedo dependent ground view factor (GVF) for sunlit 

surfaces (ΨgSunlit(α)) at 1 pm, e) albedo dependent ground view factor for all ground pixels (ΨgAll(α)) and f) outgoing shortwave radiation 

(W m-2) at 1 pm. Model input: I=728.3 W m-2, G=766.1 W m-2 and D=194.8 W m-2. Pixel resolution is 1 m. See definitions in text. 
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Figure 2. Calculated values for 1 pm 26 July 2006 Gothenburg (Sweden) of a) outgoing longwave radiation (W m-2), b) outgoing 

shortwave radiation (W m-2) from south, c) from north and d) mean radiant temperature, Tmrt (°C), for a standing person. Pixel 

resolution is 1 m. 

 

 
 

Figure 3. Observed relation of temperature difference between surface a) dark asphalt and b) grass and air and maximum sun 

elevation under clear-sky condition (clearness index > 0.9) in Gothenburg Sweden between 1 July 2011 and 31 December 2012. Each 

data point is a daily value. 
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Figure 4. The Barbican Estate study area in London, UK, (51°30’N, 0°7’W) and model domain with a) building and ground DSM 

overlain with a vegetation canopy DSM (CDSM) and b) ground cover grid. SITE 1 and 2 are where integral radiation measurements 

were conducted. Pixel resolution is 1 m. 

 
 

Figure 5. Influence of ground cover on surface temperature and mean radiant temperature on the 6 June 1997 in Gothenburg; a) 

shortwave radiation components (I=direct (incidence angle), G=global, D=diffuse), b) surface temperature c) mean radiant temperature 

(Tmrt). Location is assumed to be fully sunlit with a SVF of 0.60. 

 
 

Figure 6. Observed and modelled values of a) incoming and outgoing shortwave, b) longwave radiation fluxes and c) mean radiant 

temperature (Tmrt) on the elevated podium site in London for five consecutive days in July, 2014. Subscripts: mod no lc - without the 
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new land cover scheme, obs - observed from integral radiation measurements, mod - modelled with the new land cover scheme and 

globe - observed with the globe temperature method (Thorsson et al. 2007).  
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Figure 7. Observed and modelled values of a) incoming and outgoing shortwave, b) longwave radiation fluxes and c) mean radiant 

temperature (Tmrt) in the garden in London for individual days in July 2014. Subscripts: mod no lc - without the new land cover 

scheme, obs - observed from integral radiation measurements, mod -modelled with the new land cover scheme and globe - observed 

with the globe temperature method (Thorsson et al. 2007). 

 
Figure 8. Observed versus modelled 15 min values of mean radiant temperature (Tmrt) for the podium and garden  sites (7 - 16 July 

2014) in London (Fig 4).  
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