207 research outputs found

    Yb2_{2}Pt2_{2}Pb: Magnetic frustration in the Shastry-Sutherland lattice

    Full text link
    We have synthesized single crystals of Yb2_{2}Pt2_{2}Pb, which crystallize in the layered U2_{2}Pt2_{2}Sn-type structure, where planes of Yb ions lie on a triangular network. We report here the first results of magnetization, specific heat, and electrical resistivity experiments. The lattice constants and high temperature magnetic susceptibility indicate that the Yb ions are trivalent, while Schottky peaks in the specific heat show that the ground state is a well isolated doublet. Significant magnetic anisotropy is observed, with the ratio of susceptibilities perpendicular and parallel to the magnetic planes differing by as much as a factor of 30 at the lowest temperatures. Antiferromagnetic order occurs at a N\'eel temperature TNT_{\rm N}=2.07 K, a transition temperature which is more than an order of magnitude smaller than the mean field interactions reflected by the in-plane Weiss temperature. Further evidence for short ranged magnetic fluctuations is found in the magnetic susceptibility and electrical resistivity, which have broad peaks above TNT_{\rm N}, and in the slow development of the magnetic entropy at TNT_{\rm N}. Our experiments indicate that Yb2_{2}Pt2_{2}Pb is a quasi-two dimensional and localized moment system, where strong magnetic frustration may arise from the geometry of the underlying Shastry-Sutherland lattice.Comment: 8 pages, 8 figure

    Searching for hexagonal analogues of the half-metallic half-Heusler XYZ compounds

    Full text link
    The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-electron compounds such as LiAlSi (formulated Li+^+[AlSi]^-) or semiconducting 18-electron compounds such as TiCoSb (formulated Ti4+^{4+}[CoSb]4^{4-}). The basis for this is that [AlSi]^- (with the same electron count as Si2_2) and [CoSb]4^{4-} (the same electron count as GaSb), are both structurally and electronically, zinc-blende semiconductors. The electronic structure of half-metallic ferromagnets in this structure type can then be described as semiconductors with stuffing magnetic ions which have a local moment: For example, 22 electron MnNiSb can be written Mn3+^{3+}[NiSb]3^{3-}. The tendency in the 18 electron compound for a semiconducting gap -- believed to arise from strong covalency -- is carried over in MnNiSb to a tendency for a gap in one spin direction. Here we similarly propose the systematic examination of 18-electron hexagonal compounds for semiconducting gaps; these would be the "stuffed wurtzite" analogues of the "stuffed zinc blende" half-Heusler compounds. These semiconductors could then serve as the basis for possibly new families of half-metallic compounds, attained through appropriate replacement of non-magnetic ions by magnetic ones. These semiconductors and semimetals with tunable charge carrier concentrations could also be interesting in the context of magnetoresistive and thermoelectric materials.Comment: 11 pages, 6 figures, of which 4 are colou

    Laves phases: superstructures induced by coloring and distortions

    Get PDF
    The structural chemistry of Laves phases, especially with respect to their superstructures induced by coloring and distortions is discussed. Starting from the three classical Laves phases MgCu2, MgZn2 and MgNi2, the more complex Komura phases are derived. Different possibilities of their description are summarized. In the second part, the superstructures are discussed based on their respective prototypes. The crystal chemical relationships are illustrated based on group-subgroup descriptions using the Bärnighausen formalism

    Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe2As2

    Full text link
    The ternary iron arsenide BaFe2As2 with the tetragonal ThCr2Si2-type structure exhibits a spin density wave (SDW) anomaly at 140 K, very similar to LaFeAsO, the parent compound of the iron arsenide superconductors. BaFe2As2 is a poor Pauli-paramagnetic metal and undergoes a structural and magnetic phase transition at 140 K, accompanied by strong anomalies in the specific heat, electrical resistance and magnetic susceptibility. In the course of this transition, the space group symmetry changes from tetragonal (I4/mmm) to orthorhombic (Fmmm). 57Fe Moessbauer spectroscopy experiments show a single signal at room temperature and full hyperfine field splitting below the phase transition temperature (5.2 T at 77 K). Our results suggest that BaFe2As2 can serve as a new parent compound for oxygen-free iron arsenide superconductors.Comment: 4 pages, 6 figures, submitted to PR

    Electronic structure of REREAuMg and REREAgMg (RERE = Eu, Gd, Yb)

    Full text link
    We have investigated the electronic structure of the equiatomic EuAuMg, GdAuMg, YbAuMg and GdAgMg intermetallics using x-ray photoelectron spectroscopy. The spectra revealed that the Yb and Eu are divalent while the Gd is trivalent. The spectral weight in the vicinity of the Fermi level is dominated by the mix of Mg ss, Au/Ag spsp and RERE spdspd bands, and not by the RERE 4f4f. We also found that the Au and Ag dd bands are extraordinarily narrow, as if the noble metal atoms were impurities submerged in a low density spsp metal host. The experimental results were compared with band structure calculations, and we found good agreement provided that the spin-orbit interaction in the Au an Ag dd bands is included and correlation effects in an open 4f4f shell are accounted for using the local density approximation + Hubbard UU scheme. Nevertheless, limitations of such a mean-field scheme to explain excitation spectra are also evident.Comment: 4 pages, 3 figures, Brief Repor

    Magnetic behaviour of Eu_2CuSi_3: Large negative magnetoresistance above Curie temperature

    Full text link
    We report here the results of magnetic susceptibility, electrical-resistivity, magnetoresistance (MR), heat-capacity and ^{151}Eu Mossbauer effect measurements on the compound, Eu_2CuSi_3, crystallizing in an AlB_2-derived hexagonal structure. The results establish that Eu ions are divalent, undergoing long-range ferromagnetic-ordering below (T_C=) 37 K. An interesting observation is that the sign of MR is negative even at temperatures close to 3T_C, with increasing magnitude with decreasing temperature exhibiting a peak at T_C. This observation, being made for a Cu containing magnetic rare-earth compound for the first time, is of relevance to the field of collosal magnetoresistance.Comment: To appear in PRB, RevTex, 4 pages text + 6 psFigs. Related to our earlier work on Gd systems (see cond-mat/9811382, cond-mat/9811387, cond-mat/9812069, cond-mat/9812365

    Ferromagnetic Ordering in the Thallide EuPdTl 2

    Get PDF
    The new thallide EuPdTl 2 , synthesized from the elements in a sealed tantalum tube in a highfrequency furnace, was investigated by X-ray diffraction on powders and single crystals: MgCuAl 2 type, Cmcm, Z = 4, a = 446.6(1), b = 1076.7(2), c = 812.0(2) pm, wR2 = 0.0632, 336 F 2 values, 16 variables. The structure can be considered as an orthorhombically distorted, palladium-filled variant of the binary Zintl phase EuTl 2 . The palladium and thallium atoms build up a three-dimensional [PdTl 2 ] polyanion with significant Pd-Tl (286 -287 pm) and Tl-Tl (323 -329 pm) interactions. The europium atoms fill distorted hexagonal channels of the [PdTl 2 ] polyanion. Susceptibility measurements show a magnetic moment of 7.46(5) µ B /Eu atom, indicative of divalent europium. EuPdTl 2 is a soft ferromagnet with a Curie temperature of T C = 12.5(5) K
    corecore