33 research outputs found
Mitral valve replacement via right thoracotomy approach for prevention of mediastinitis in a female patient with long-term uncontrolled diabetes mellitus: a case report
A 76-year-old woman with a history of percutaneous transvenous mitral commissurotomy and repeated hospital admissions due to heart failure was referred for an operation for severe mitral valve stenosis. She presented with hypertension, hyperlipidemia and cerebral infarction with stenosis of right internal carotid artery, retinopathy, neuropathy and nephropathy caused by long-term uncontrolled diabetes mellitus, hemoglobin A1c of 9.4%, and New York Heart Association (NYHA) functional classification of 3/4. Echocardiography revealed severe mitral valve stenosis with mitral valve area of 0.6 cm2, moderate tricuspid valve regurgitation, and dilatation of the left atrium. Taking into consideration the NYHA functional classification and severe mitral valve stenosis, an immediate surgical intervention designed to prevent mediastinitis was performed. The approach was via the right 4th thoracotomy, as conventional sternotomy would raise the risk of mediastinitis. Postoperative antibiotics were administered intravenously for 2 days, and signs of infection were not recognized
Aquaporins: important but elusive drug targets.
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators
Aquaporin water channels in the nervous system.
The aquaporins (AQPs) are plasma membrane water-transporting proteins. AQP4 is the principal member of this protein family in the CNS, where it is expressed in astrocytes and is involved in water movement, cell migration and neuroexcitation. AQP1 is expressed in the choroid plexus, where it facilitates cerebrospinal fluid secretion, and in dorsal root ganglion neurons, where it tunes pain perception. The AQPs are potential drug targets for several neurological conditions. Astrocytoma cells strongly express AQP4, which may facilitate their infiltration into the brain, and the neuroinflammatory disease neuromyelitis optica is caused by AQP4-specific autoantibodies that produce complement-mediated astrocytic damage
Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch
The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2-3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo , migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues
Electrical parameters and water permeability properties of monolayers formed by T84 cells cultured on permeable supports
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism
Recommended from our members
Delivery of replication-competent retrovirus expressing Escherichia coli purine nucleoside phosphorylase increases the metabolism of the prodrug, fludarabine phosphate and suppresses the growth of bladder tumor xenografts
We have developed unique replication-competent retroviral (RCR) vectors based on murine leukemia virus that provide improved efficiency of viral delivery, allow for long-term transgene expression and demonstrate an intrinsic selectivity for transduction of rapidly dividing tumor cells. The purpose of this study was to evaluate the in vivo transduction efficiency and the therapeutic efficacy of the RCR vector mediated delivery of Escherichia coli purine nucleoside phosphorylase (PNP) in combination with fludarabine phosphate for bladder cancer. We constructed vectors containing green fluorescent protein (GFP) gene (ACE)-GFP) or PNP gene (ACE-PNP). KU-19-19 bladder tumors exhibited 28.3+/-16.1, 46.6+/-5.8 and 93.7+/-7.8% of GFP expression on 14, 18 and 26 days after intratumoral injection of ACE-GFP, respectively. GFP expression could not be observed in normal tissues surrounding the injected tumors. No detectable polymerase chain reaction products of GFP gene could be observed in any distant organs. Intratumoral injection of ACE-PNP, followed by systemically administered fludarabine phosphate, significantly inhibited the growth of pre-established KU-19-19 tumors. Our results indicate that RCR vectors are a potentially efficient gene delivery method and that the RCR vector mediated PNP gene transfer and fludarabine phosphate treatment might be a novel and potentially therapeutic modality for bladder cancer