12 research outputs found

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    Cryptosporidium

    No full text

    Mechanisms of apoptosis in crustacea : what conditions induce versus suppress cell death?

    Get PDF
    Arthropoda is the largest of all animal phyla and includes about 90% of extant species. Our knowledge about regulation of apoptosis in this phylum is largely based on findings for the fruit fly Drosophila melanogaster. Recent work with crustaceans shows that apoptotic proteins, and presumably mechanisms of cell death regulation, are more diverse in arthropods than appreciated based solely on the excellent work with fruit flies. Crustacean homologs exist for many major proteins in the apoptotic networks of mammals and D. melanogaster, but integration of these proteins into the physiology and pathophysiology of crustaceans is far from complete. Whether apoptosis in crustaceans is mainly transcriptionally regulated as in D. melanogaster (e.g., RHG „killer‟ proteins), or rather is controlled by pro- and anti-apoptotic Bcl-2 family proteins as in vertebrates needs to be clarified. Some phenomena like the calcium-induced opening of the mitochondrial permeability transition pore (MPTP) are apparently lacking in crustaceans and may represent a vertebrate invention. We speculate that differences in regulation of the intrinsic pathway of crustacean apoptosis might represent a prerequisite for some species to survive harsh environmental insults. Pro-apoptotic stimuli described for crustaceans include UV radiation, environmental toxins, and a diatom-produced chemical that promotes apoptosis in offspring of a copepod. Mechanisms that serve to depress apoptosis include the inhibition of caspase activity by high potassium in energetically healthy cells, alterations in nucleotide abundance during energy-limited states like diapause and anoxia, resistance to opening of the calcium-induced MPTP, and viral accommodation during persistent viral infection. Characterization of the players, pathways, and their significance in the core machinery of crustacean apoptosis is revealing new insights for the field of cell death

    Echinodermata: The Complex Immune System in Echinoderms

    No full text
    View references (418) The Echinodermata are an ancient phylum of benthic marine invertebrates with a dispersal-stage planktonic larva. These animals have innate immune systems characterized initially by clearance of foreign particles, including microbes, from the body cavity of both larvae and adults, and allograft tissue rejection in adults. Immune responsiveness is mediated by a variety of adult coelomocytes and larval mesenchyme cells. Echinoderm diseases from a range of pathogens can lead to mass die-offs and impact aquaculture, but some individuals can recover. Genome sequences of several echinoderms have identified genes with immune function, including expanded families of Toll-like receptors, NOD-like receptors, and scavenger receptors with cysteine-rich domains, plus signaling pathways and cytokines. The set of transcription factors that regulate proliferation and differentiation of the cellular immune system are conserved and indicate the ancestral origins of hematopoiesis. Both larval and adult echinoderms are in constant contact with potential pathogens in seawater, and they respond to infection by phagocytosis and encapsulation, and employ proteins that function in immune detection and response. Antipathogen responses include activation of the SpTransformer genes, a complement system, and the production of many types of antimicrobial peptides. Echinoderms have homologues of the recombinase activating genes plus all associated genes that function in vertebrates for immunoglobulin gene family rearrangement, although their gene targets are unknown. The echinoderm immune system has been characterized as unexpectedly complex, robust, and flexible. Many echinoderms have very long life-spans that correlate with an excellent capacity for cell damage repair. In many marine ecosystems, echinoderms are keystone predators and herbivores, and therefore are species that can serve as optimal sentinels of environmental health. Coelomocytes can be employed in sensor systems to test for the presence of marine pollutants. When Elie Metchnikoff inserted a rose prickle into a larval sea star and observed chemotaxis, phagocytosis, and encapsulation by the mesenchyme cells, he initiated not only the field of immunology but also that of comparative immunology, of which the echinoderms have been an important part
    corecore