255 research outputs found

    Semi-field assessment of the BG-Malaria trap for monitoring the African malaria vector, Anopheles arabiensis

    Get PDF
    Odour-baited technologies are increasingly considered for effective monitoring of mosquito populations and for the evaluation of vector control interventions. The BG-Malaria trap (BGM), which is an upside-down variant of the widely used BG-Sentinel trap (BGS), has been demonstrated to be effective to sample the Brazilian malaria vector, Anopheles darlingi. We evaluated the BGM as an improved method for sampling the African malaria vectors, Anopheles arabiensis. Experiments were conducted inside a large semi-field cage to compare trapping efficiencies of BGM and BGS traps, both baited with the synthetic attractant, Ifakara blend, supplemented with CO2. We then compared BGMs baited with either of four synthetic mosquito lures, Ifakara blend, Mbita blend, BG-lure or CO2, and an unbaited BGM. Lastly, we compared BGMs baited with the Ifakara blend dispensed via either nylon strips, BG cartridges (attractant-infused microcapsules encased in cylindrical plastic cartridge) or BG sachets (attractant-infused microcapsules encased in plastic sachets). All tests were conducted between 6P.M. and 7A.M., with 200–600 laboratory-reared An. arabiensis released nightly in the test chamber. The median number of An. arabiensis caught by the BGM per night was 83, IQR:(73.5–97.75), demonstrating clear superiority over BGS (median catch = 32.5 (25.25–37.5)). Compared to unbaited controls, BGMs baited with Mbita blend caught most mosquitoes (45 (29.5–70.25)), followed by BGMs baited with CO2 (42.5 (27.5–64)), Ifakara blend (31 (9.25–41.25)) and BG lure (16 (4–22)). BGM caught 51 (29.5–72.25) mosquitoes/night, when the attractants were dispensed using BG-Cartridges, compared to BG-Sachet (29.5 (24.75–40.5)), and nylon strips (27 (19.25–38.25)), in all cases being significantly superior to unbaited controls (p < 000.1). The findings demonstrate potential of the BGM as a sampling tool for African malaria vectors over the standard BGS trap. Its efficacy can be optimized by selecting appropriate odour baits and odour-dispensing systems

    Comparative Field Evaluation of Combinations of Long-Lasting Insecticide Treated Nets and Indoor Residual Spraying, Relative to Either Method Alone, for Malaria Prevention in an Area where the main Vector is Anopheles Arabiensis.

    Get PDF
    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used together in the same households to improve malaria control despite inconsistent evidence on whether such combinations actually offer better protection than nets alone or IRS alone. Comparative tests were conducted using experimental huts fitted with LLINs, untreated nets, IRS plus untreated nets, or combinations of LLINs and IRS, in an area where Anopheles arabiensis is the predominant malaria vector species. Three LLIN types, Olyset®, PermaNet 2.0® and Icon Life® nets and three IRS treatments, pirimiphos-methyl, DDT, and lambda cyhalothrin, were used singly or in combinations. We compared, number of mosquitoes entering huts, proportion and number killed, proportions prevented from blood-feeding, time when mosquitoes exited the huts, and proportions caught exiting. The tests were done for four months in dry season and another six months in wet season, each time using new intact nets. All the net types, used with or without IRS, prevented >99% of indoor mosquito bites. Adding PermaNet 2.0® and Icon Life®, but not Olyset® nets into huts with any IRS increased mortality of malaria vectors relative to IRS alone. However, of all IRS treatments, only pirimiphos-methyl significantly increased vector mortality relative to LLINs alone, though this increase was modest. Overall, median mortality of An. arabiensis caught in huts with any of the treatments did not exceed 29%. No treatment reduced entry of the vectors into huts, except for marginal reductions due to PermaNet 2.0® nets and DDT. More than 95% of all mosquitoes were caught in exit traps rather than inside huts. Where the main malaria vector is An. arabiensis, adding IRS into houses with intact pyrethroid LLINs does not enhance house-hold level protection except where the IRS employs non-pyrethroid insecticides such as pirimiphos-methyl, which can confer modest enhancements. In contrast, adding intact bednets onto IRS enhances protection by preventing mosquito blood-feeding (even if the nets are non-insecticidal) and by slightly increasing mosquito mortality (in case of LLINs). The primary mode of action of intact LLINs against An. arabiensis is clearly bite prevention rather than insecticidal activity. Therefore, where resources are limited, priority should be to ensure that everyone at risk consistently uses LLINs and that the nets are regularly replaced before being excessively torn. Measures that maximize bite prevention (e.g. proper net sizes to effectively cover sleeping spaces, stronger net fibres that resist tears and burns and net use practices that preserve net longevity), should be emphasized

    Reflections on the 2021 World Malaria Report and the future of malaria control

    Get PDF
    The World Malaria Report, released in December 2021, reflects the unique challenges currently facing the global malaria community. The report showed the devastating toll of malaria, with an estimated 627,000 people losing their lives to the disease in 2020. The improved methodological approach used for calculating cause of death for young children revealed a systematic underestimation of disease burden over the past two decades; and that Africa has an even greater malaria crisis than previously known. While countries were able to prevent the worst-case scenarios, the disruptions due to the COVID-19 pandemic revealed how weak health systems and inadequate financing can limit the capacity of the continent to address the malaria challenge. African countries also face a convergence of biological threats that could redefine malaria control, notably widespread pyrethroid resistance and emerging resistance to artemisinin. Despite these challenges, there is cause for optimism in lessons learned from the COVID-19 pandemic, recent acceleration of cutting edge research and development, and new partnerships that encourage leadership from and ownership by affected countries. This article presents key insights from the 2021 World Malaria Report and reflections on the future trajectories: it was informed by an in-depth discussion with leading malaria experts from the World Health Organization (WHO), the Bill & Melinda Gates Foundation, and the U.S. President's Malaria Initiative (PMI). The discussion took place during the 34th edition of the Ifakara Master Classes, held virtually on December 15th, 2021

    Mathematical Evaluation of Community Level Impact of Combining Bed Nets and Indoor Residual Spraying upon Malaria Transmission in Areas where the main Vectors are Anopheles Arabiensis Mosquitoes.

    Get PDF
    Indoor residual insecticide spraying (IRS) and long-lasting insecticide treated nets (LLINs) are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset, PermaNet 2.0, Icon Life nets) with IRS (pirimiphos methyl, lambda cyhalothrin, DDT), in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset or PermaNet 2.0 nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used), but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used) or even regressive (e.g. when DDT is used for the IRS). Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of whether they are delivered as LLINs or IRS. The insecticidal action of LLINs and IRS probably already approaches their absolute limit of potential impact upon this persistent vector so personal protection of nets should be enhanced by improving the physical integrity and durability. Combining LLINs and non-pyrethroid IRS in residual transmission systems may nevertheless be justified as a means to manage insecticide resistance and prevent potential rebound of not only An. arabiensis, but also more potent, vulnerable and historically important species such as Anopheles gambiae and Anopheles funestus

    What Africa can do to accelerate and sustain progress against malaria

    Get PDF
    After a longstanding global presence, malaria is now largely non-existent or suppressed in most parts of the world. Today, cases and deaths are primarily concentrated in sub-Saharan Africa. According to many experts, this persistence on the African continent reflects factors such as resistance to insecticides and drugs as well as insufficient access to essential commodities such as insecticide-treated nets and effective drugs. Crucially, however, this narrative ignores many central weaknesses in the fight against malaria and instead reinforces a narrow, commodity-driven vision of disease control. This paper therefore describes the core challenges hindering malaria programs in Africa and highlights key opportunities to rethink current strategies for sustainable control and elimination. The epidemiology of malaria in Africa presents far greater challenges than elsewhere and requires context-specific initiatives tailored to national and sub-national targets. To sustain progress, African countries must systematically address key weaknesses in its health systems, improve the quality and use of data for surveillance-responses, improve both technical and leadership competencies for malaria control, and gradually reduce overreliance on commodities while expanding multisectoral initiatives such as improved housing and environmental sanitation. They must also leverage increased funding from both domestic and international sources, and support pivotal research and development efforts locally. Effective vaccines and drugs, or other potentially transformative technologies such as genedrive modified mosquitoes, could further accelerate malaria control by complementing current tools. However, our underlying strategies remain insufficient and must be expanded to include more holistic and context-specific approaches critical to achieve and sustain effective malaria control

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes

    The potential of a new larviciding method for the control of malaria vectors

    Get PDF
    Malaria pathogens are transmitted to humans by the bite of female Anopheles mosquitoes. The juvenile stages of these mosquitoes develop in a variety of water bodies and are key targets for vector control campaigns involving the application of larvicides. The effective operational implementation of these campaigns is difficult, time consuming, and expensive. New evidence however, suggests that adult mosquitoes can be co-opted into disseminating larvicides in a far more targeted and efficient manner than can be achieved using conventional methods

    Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania

    Get PDF
    Background: Cost-sharing schemes incorporating modest targeted subsidies have promoted insecticide-treated nets (ITNs) for malaria prevention in the Kilombero Valley, southern Tanzania, since 1996. Here we evaluate resulting changes in bednet coverage and malaria transmission. Methods: Bednets were sold through local agents at fixed prices representing a 34% subsidy relative to full delivery cost. A further targeted subsidy of 15% was provided to vulnerable groups through discount vouchers delivered through antenatal clinics and regular immunizations. Continuous entomological surveys (2,376 trap nights) were conducted from October 2001 to September 2003 in 25 randomly-selected population clusters of a demographic surveillance system which monitored net coverage. Results: Mean net usage of 75 % (11,982/16,086) across all age groups was achieved but now-obsolete technologies available at the time resulted in low insecticide treatment rates. Malaria transmission remained intense but was substantially reduced: Compared with an exceptionally high historical mean EIR of 1481, even non-users of nets were protected (EIR [fold reduction] = 349 infectious bites per person per year [Ă—4]), while the average resident (244 [Ă—6]), users of typical nets (210 [Ă—7]) and users of insecticidal nets (105 [Ă—14]) enjoyed increasing benefits. Conclusion: Despite low net treatment levels, community-level protection was equivalent to the personal protection of an ITN. Greater gains for net users and non-users are predicted if more expensive long-lasting ITN technologies can be similarly promoted with correspondingly augmented subsidies. Cost sharing strategies represent an important option for national programmes lacking adequate financing to fully subsidize comprehensive ITN coverage

    Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence.

    Get PDF
    BACKGROUND\ud \ud Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.\ud \ud METHODS\ud \ud The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 Ă— 10(10) conidia m(-2)) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.\ud \ud RESULTS\ud \ud All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.\ud \ud CONCLUSION\ud \ud Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field
    • …
    corecore