91 research outputs found

    Derivation and external validation of a clinical prognostic model identifying children at risk of death following presentation for diarrheal care

    Get PDF
    Diarrhea continues to be a leading cause of death for children under-five. Amongst children treated for acute diarrhea, mortality risk remains elevated during and after acute medical management. Identification of those at highest risk would enable better targeting of interventions, but available prognostic tools lack validation. We used clinical and demographic data from the Global Enteric Multicenter Study (GEMS) to build clinical prognostic models (CPMs) to predict death (in-treatment, after discharge, or either) in children aged ≤59 months presenting with moderate-to-severe diarrhea (MSD), in Africa and Asia. We screened variables using random forests, and assessed predictive performance with random forest regression and logistic regression using repeated cross-validation. We used data from the Kilifi Health and Demographic Surveillance System (KHDSS) and Kilifi County Hospital (KCH) in Kenya to externally validate our GEMS-derived CPM. Of 8060 MSD cases, 43 (0.5%) children died in treatment and 122 (1.5% of remaining) died after discharge. MUAC at presentation, respiratory rate, age, temperature, number of days with diarrhea at presentation, number of people living in household, number of children <60 months old living in household, and how much the child had been offered to drink since diarrhea started were predictive of death both in treatment and after discharge. Using a parsimonious 2-variable prediction model, we achieved an area under the ROC curve (AUC) of 0.84 (95% CI: 0.82, 0.86) in the derivation dataset, and an AUC = 0.74 (95% CI 0.71, 0.77) in the external dataset. Our findings suggest it is possible to identify children most likely to die after presenting to care for acute diarrhea. This could represent a novel and cost-effective way to target resources for the prevention of childhood mortality

    Antimicrobial Activity, Acute Toxicity and Cytoprotective Effect of Crassocephalum Vitellinum (Benth.) S. Moore Extract in a Rat Ethanol-HCl Gastric Ulcer Model.

    Get PDF
    A decoction of Crassocephallum vitellinum (Benth.) S. Moore (Asteraceae) is used in Kagera Region to treat peptic ulcers. This study seeks to evaluate an aqueous ethanol extract of aerial parts of the plant for safety and efficacy. An 80% ethanolic extract of C. vitellinum at doses of 100, 200, 400 and 800 mg/kg body wt was evaluated for ability to protect Sprague Dawley rats from acidified ethanol gastric ulceration in comparison with 40 mg/kg body wt pantoprazole. The extract and its dichloromethane, ethyl acetate, and aqueous fractions were also evaluated for acute toxicity in mice, brine shrimp toxicity, and antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholera (clinical isolate), and Streptococcus faecalis (clinical isolate). The groups of phytochemicals present in the extract were also determined. The ethanolic extract of C. vitellinum dose-dependently protected rat gastric mucosa against ethanol/HCl insult to a maximum of 88.3% at 800 mg/kg body wt, affording the same level of protection as by 40 mg/kg body wt pantoprazole. The extract also exhibited weak antibacterial activity against S. typhi and E. coli, while its ethyl acetate, dichloromethane and aqueous fractions showed weak activity against K. pneumonia, S.typhi, E. coli and V. cholera. The extract was non-toxic to mice up to 5000 mg/kg body wt, and the total extract (LC50 = 37.49 μg/ml) and the aqueous (LC50 = 87.92 μg/ml), ethyl acetate (LC50 = 119.45 μg/ml) and dichloromethane fractions (88.79 μg/ml) showed low toxicity against brine shrimps. Phytochemical screening showed that the extract contains tannins, saponins, flavonoids, and terpenoids. The results support the claims by traditional healers that a decoction of C.vitellinum has antiulcer activity. The mechanism of cytoprotection is yet to be determined but the phenolic compounds present in the extract may contribute to its protective actions. However, the dose conferring gastro-protection in the rat is too big to be translated to clinical application; thus bioassay guided fractionation to identify active compound/s or fractions is needed, and use of more peptic ulcer models to determine the mechanism for the protective action

    Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach

    Get PDF
    Background A better understanding of which children are likely to die during acute illness will help clinicians and policy makers target resources at the most vulnerable children. We used machine learning to characterise mortality in the 30-days following admission and the 180-days after discharge from nine hospitals in low and middle-income countries (LMIC). Methods A cohort of 3101 children aged 2–24 months were recruited at admission to hospital for any acute illness in Bangladesh (Dhaka and Matlab Hospitals), Pakistan (Civil Hospital Karachi), Kenya (Kilifi, Mbagathi, and Migori Hospitals), Uganda (Mulago Hospital), Malawi (Queen Elizabeth Central Hospital), and Burkina Faso (Banfora Hospital) from November 2016 to January 2019. To record mortality, children were observed during their hospitalisation and for 180 days post-discharge. Extreme gradient boosted models of death within 30 days of admission and mortality in the 180 days following discharge were built. Clusters of mortality sharing similar characteristics were identified from the models using Shapley additive values with spectral clustering. Findings Anthropometric and laboratory parameters were the most influential predictors of both 30-day and post-discharge mortality. No WHO/IMCI syndromes were among the 25 most influential mortality predictors of mortality. For 30-day mortality, two lower-risk clusters (N = 1915, 61%) included children with higher-than-average anthropometry (1% died, 95% CI: 0–2), and children without signs of severe illness (3% died, 95% CI: 2–4%). The two highest risk 30-day mortality clusters (N = 118, 4%) were characterised by high urea and creatinine (70% died, 95% CI: 62–82%); and nutritional oedema with low platelets and reduced consciousness (97% died, 95% CI: 92–100%). For post-discharge mortality risk, two low-risk clusters (N = 1753, 61%) were defined by higher-than-average anthropometry (0% died, 95% CI: 0–1%), and gastroenteritis with lower-than-average anthropometry and without major laboratory abnormalities (0% died, 95% CI: 0–1%). Two highest risk post-discharge clusters (N = 267, 9%) included children leaving against medical advice (30% died, 95% CI: 25–37%), and severely-low anthropometry with signs of illness at discharge (46% died, 95% CI: 34–62%). Interpretation WHO clinical syndromes are not sufficient at predicting risk. Integrating basic laboratory features such as urea, creatinine, red blood cell, lymphocyte and platelet counts into guidelines may strengthen efforts to identify high-risk children during paediatric hospitalisations. Funding Bill & Melinda Gates Foundation OPP1131320

    Should first-line empiric treatment strategies cover coagulase-negative staphylococcal infections in severely malnourished or HIV-infected children in Kenya?

    Get PDF
    BACKGROUND: Bloodstream infection is a common cause of morbidity in children aged andlt;5 years in developing countries. In studies reporting bacteremia in Africa, coagulase-negative Staphylococci (CoNS) are commonly isolated. However, it is currently unclear whether children who are highly susceptible to infection because of severe acute malnutrition (SAM) or HIV should be treated with antimicrobials specifically to cover CoNS. We aimed to determine the clinical significance of CoNS amongst children admitted to a rural hospital in Kenya in relation to nutritional and HIV status. METHODS: Systematically collected clinical and microbiological surveillance data from children aged 6-59 months admitted to Kilifi County Hospital (2007-2013) were analysed. Multivariable regression was used to test associations between CoNS isolation from blood cultures and SAM (MUAC andlt;11.5cm or nutritional oedema (kwashiorkor)), and HIV serostatus; and among children with SAM or HIV, associations between CoNS isolation and mortality, duration of hospitalization and clinical features. RESULTS: CoNS were isolated from blood culture in 906/13,315 (6.8%) children, of whom 135/906 (14.9%) had SAM and 54/906 (6.0%) were HIV antibody positive. CoNS isolation was not associated with SAM (MUACandlt;11.5cm (aOR 1.11, 95% CI 0.88-1.40) or kwashiorkor (aOR 0.84, 95% CI 0.48-1.49)), or a positive HIV antibody test (aOR 1.25, 95% CI 0.92-1.71). Among children with SAM or a positive HIV antibody test, CoNS isolation was not associated with mortality or prolonged hospitalization. CONCLUSION: In a large, systematic study, there was no evidence that antimicrobial therapy should specifically target CoNS amongst children with SAM or HIV-infection or exposure

    The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia

    Get PDF
    Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725

    Clinical laboratory reference values amongst children aged 4 weeks to 17 months in Kilifi, Kenya: A cross sectional observational study

    Get PDF
    Reference intervals for clinical laboratory parameters are important for assessing eligibility, toxicity grading and management of adverse events in clinical trials. Nonetheless, haematological and biochemical parameters used for clinical trials in sub-Saharan Africa are typically derived from industrialized countries, or from WHO references that are not region-specific. We set out to establish community reference values for haematological and biochemical parameters amongst children aged 4 weeks to 17 months in Kilifi, Kenya. We conducted a cross sectional study nested within phase II and III trials of RTS, S malaria vaccine candidate. We analysed 10 haematological and 2 biochemical parameters from 1,070 and 423 community children without illness prior to experimental vaccine administration. Statistical analysis followed Clinical and Laboratory Standards Institute EP28-A3c guidelines. 95% reference ranges and their respective 90% confidence intervals were determined using non-parametric methods. Findings were compared with published ranges from Tanzania, Europe and The United States. We determined the reference ranges within the following age partitions: 4 weeks to <6 months, 6 months to less than <12 months, and 12 months to 17 months for the haematological parameters; and 4 weeks to 17 months for the biochemical parameters. There were no gender differences for all haematological and biochemical parameters in all age groups. Hb, MCV and platelets 95% reference ranges in infants largely overlapped with those from United States or Europe, except for the lower limit for Hb, Hct and platelets (lower); and upper limit for platelets (higher) and haematocrit(lower). Community norms for common haematological and biochemical parameters differ from developed countries. This reaffirms the need in clinical trials for locally derived reference values to detect deviation from what is usual in typical children in low and middle income countries

    A reduced-carbohydrate and lactose-free formulation for stabilization among hospitalized children with severe acute malnutrition: A double-blind, randomized controlled trial

    Get PDF
    BackgroundChildren with medically complicated severe acute malnutrition (SAM) have high risk of inpatient mortality. Diarrhea, carbohydrate malabsorption, and refeeding syndrome may contribute to early mortality and delayed recovery. We tested the hypothesis that a lactose-free, low-carbohydrate F75 milk would serve to limit these risks, thereby reducing the number of days in the stabilization phase.Methods and findingsIn a multicenter double-blind trial, hospitalized severely malnourished children were randomized to receive standard formula (F75) or isocaloric modified F75 (mF75) without lactose and with reduced carbohydrate. The primary endpoint was time to stabilization, as defined by the World Health Organization (WHO), with intention-to-treat analysis. Secondary outcomes included in-hospital mortality, diarrhea, and biochemical features of malabsorption and refeeding syndrome. The trial was registered at clinicaltrials.gov (NCT02246296). Four hundred eighteen and 425 severely malnourished children were randomized to F75 and mF75, respectively, with 516 (61%) enrolled in Kenya and 327 (39%) in Malawi. Children with a median age of 16 months were enrolled between 4 December 2014 and 24 December 2015. One hundred ninety-four (46%) children assigned to F75 and 188 (44%) to mF75 had diarrhea at admission. Median time to stabilization was 3 days (IQR 2–5 days), which was similar between randomized groups (0.23 [95% CI −0.13 to 0.60], P = 0.59). There was no evidence of effect modification by diarrhea at admission,age, edema, or HIV status. Thirty-six and 39 children died before stabilization in the F75 and in mF75 arm, respectively (P = 0.84). Cumulative days with diarrhea (P = 0.27), enteral (P = 0.42) or intravenous fluids (P = 0.19), other serious adverse events before stabilization, and serum and stool biochemistry at day 3 did not differ between groups. The main limitation was that the primary outcome of clinical stabilization was based on WHO guidelines, comprising clinical evidence of recovery from acute illness as well as metabolic stabilization evidenced by recovery of appetite. ConclusionsEmpirically treating hospitalized severely malnourished children during the stabilization phase with lactose-free, reduced-carbohydrate milk formula did not improve clinical outcomes. The biochemical analyses suggest that the lactose-free formulae may still exceed a carbohydrate load threshold for intestinal absorption, which may limit their usefulness in the context of complicated SAM

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    • …
    corecore