994 research outputs found

    Are there nu_mu or nu_tau in the flux of solar neutrinos on earth?

    Full text link
    Using the model independent method of Villante, Fiorentini, Lisi, Fogli, Palazzo, and the rates measured in the SNO and Super-Kamiokande solar neutrino experiment, we calculate the amount of active nu_mu or nu_tau present in the flux of solar neutrinos on Earth. We show that the probability of nu_e->nu_{mu,tau} transitions is larger than zero at 99.89% CL. We find that the averaged flux of nu_{mu,tau} on Earth is larger than 0.17 times the 8B nu_e flux predicted by the BP2000 Standard Solar Model at 99% CL. We discuss also the consequences of possible nu_e->anti-nu_{mu,tau} or nu_e->anti-nu_e transitions of solar neutrinos. We derive a model-independent lower limit of 0.52 at 99% CL for the ratio of the 8B nu_e flux produced in the Sun and its value in the BP2000 Standard Solar Model.Comment: 5 pages. Added discussion on possible nu_e->anti-nu_{mu,tau} or nu_e->anti-nu_e transition

    Large Extra Dimensions, Sterile neutrinos and Solar Neutrino Data

    Full text link
    Solar, atmospheric and LSND neutrino oscillation results require a light sterile neutrino, νB\nu_B, which can exist in the bulk of extra dimensions. Solar νe\nu_e, confined to the brane, can oscillate in the vacuum to the zero mode of νB\nu_B and via successive MSW transitions to Kaluza-Klein states of νB\nu_B. This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum.Comment: 4 pages, 2 figure

    Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ

    Full text link
    Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux and rate are tabulated. Plots of average energy and angular distributions are given. Implications on muon tracker design for future experiments are discussed.Comment: Revtex4 33 pages, 16 figures and 4 table

    Geotomography with solar and supernova neutrinos

    Get PDF
    We show how by studying the Earth matter effect on oscillations of solar and supernova neutrinos inside the Earth one can in principle reconstruct the electron number density profile of the Earth. A direct inversion of the oscillation problem is possible due to the existence of a very simple analytic formula for the Earth matter effect on oscillations of solar and supernova neutrinos. From the point of view of the Earth tomography, these oscillations have a number of advantages over the oscillations of the accelerator or atmospheric neutrinos, which stem from the fact that solar and supernova neutrinos are coming to the Earth as mass eigenstates rather than flavour eigenstates. In particular, this allows reconstruction of density profiles even over relatively short neutrino path lengths in the Earth, and also of asymmetric profiles. We study the requirements that future experiments must meet to achieve a given accuracy of the tomography of the Earth.Comment: 35 pages, 7 figures; minor textual changes in section

    Supernova pointing with low- and high-energy neutrino detectors

    Full text link
    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of ν\nu-ee-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is 88^\circ at 95% C.L. in the absence of tagging, which improves to 33^\circ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as 0.60.6^\circ. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical explosion, which may locate the SN to within a few tenths of a degree at a future km2^2 high-energy neutrino telescope. If the SN is not seen in the electromagnetic spectrum, locating it in the sky through neutrinos is crucial for identifying the Earth matter effects on SN neutrino oscillations.Comment: 13 pages, 7 figures, Revtex4 format. The final version to be published in Phys. Rev. D. A few points in the original text are clarifie

    Neutrino magnetic moments, flavor mixing, and the SuperKamiokande solar data

    Get PDF
    We find that magnetic neutrino-electron scattering is unaffected by oscillations for vacuum mixing of Dirac neutrinos with only diagonal moments and for Majorana neutrinos with two flavors. For MSW mixing, these cases again obtain, though the effective moments can depend on the neutrino energy. Thus, e.g., the magnetic moments measured with νˉe\bar{\nu}_e from a reactor and νe\nu_e from the Sun could be different. With minimal assumptions, we find a new limit on μν\mu_{\nu} using the 825-days SuperKamiokande solar neutrino data: μν1.5×1010μB|\mu_{\nu}| \le 1.5\times 10^{-10} \mu_B at 90% CL, comparable to the existing reactor limit.Comment: 4 pages including two inline figures. New version has 825 days SK result, some minor revisions. Accepted for Physical Review Letter

    Weak and Electromagnetic Nuclear Decay Signatures for Neutrino Reactions in SuperKamiokande

    Full text link
    We suggest the study of events in the SuperKamiokande neutrino data due to charged- and neutral-current neutrino reactions followed by weak and/or electromagnetic decays of struck nuclei and fragments thereof. This study could improve the prospects of obtaining evidence for τ\tau production from νμντ\nu_\mu \to \nu_\tau oscillations and could augment the data sample used to disfavor νμνsterile\nu_\mu \to \nu_{sterile} oscillations.Comment: 7 pages, latex, to appear in Phys. Rev. Let

    Can a supernova be located by its neutrinos?

    Get PDF
    A future core-collapse supernova in our Galaxy will be detected by several neutrino detectors around the world. The neutrinos escape from the supernova core over several seconds from the time of collapse, unlike the electromagnetic radiation, emitted from the envelope, which is delayed by a time of order hours. In addition, the electromagnetic radiation can be obscured by dust in the intervening interstellar space. The question therefore arises whether a supernova can be located by its neutrinos alone. The early warning of a supernova and its location might allow greatly improved astronomical observations. The theme of the present work is a careful and realistic assessment of this question, taking into account the statistical significance of the various neutrino signals. Not surprisingly, neutrino-electron forward scattering leads to a good determination of the supernova direction, even in the presence of the large and nearly isotropic background from other reactions. Even with the most pessimistic background assumptions, SuperKamiokande (SK) and the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to be within circles of radius 55^\circ and 2020^\circ, respectively. Other reactions with more events but weaker angular dependence are much less useful for locating the supernova. Finally, there is the oft-discussed possibility of triangulation, i.e., determination of the supernova direction based on an arrival time delay between different detectors. Given the expected statistics we show that, contrary to previous estimates, this technique does not allow a good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds some brief comment

    A new fit to solar neutrino data in models with large extra dimensions

    Full text link
    String inspired models with millimeter scale extra dimensions provide a natural way to understand an ultralight sterile neutrino needed for a simultaneous explanation of the solar, atmospheric and LSND neutrino oscillation results. The sterile neutrino is the bulk neutrino (νB\nu_B) postulated to exist in these models, and it becomes ultralight in theories that prevent the appearance of its direct mass terms. Its Kaluza-Klein (KK) states then add new oscillation channels for the electron neutrino emitted from the solar core. We show that successive MSW transitions of solar νe\nu_e to the lower lying KK modes of νB\nu_B in conjunction with vacuum oscillations between the νe\nu_e and the zero mode of νB\nu_B provide a new way to fit the solar neutrino data. Using just the average rates from the three types of solar experiments, we predict the Super-Kamiokande spectrum with 73\% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum. We discuss both intermediate and low string scale models where the desired phenomenology can emerge naturally.Comment: 20 pages, contains updated SuperK results and reference

    The angular distribution of the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+pe++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+de++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+de+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+pe++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure
    corecore