606 research outputs found

    Accumulation-based computing using phasechange memories with FET access devices

    Get PDF
    Copyright © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Phase-change materials and devices have received much attention as a potential route to the realization of various types of unconventional computing paradigms. In this letter, we present non-von Neumann arithmetic processing that exploits the accumulative property of phase-change memory (PCM) cells. Using PCM cells with integrated FET access devices, we perform a detailed study of accumulation-based computation. We also demonstrate efficient factorization using PCM cells, a technique that could pave the way for massively parallelized computations.Engineering and Physical Sciences Research Council (EPSRC

    Comparative genomics of Streptococcus macedonicus ACA-DC 198 against related species within the Streptococcus bovis/Streptococcus equinus complex

    Get PDF
    Apart from Streptococcus thermophilus other streptococci that can be found growing in milk belong to the Streptococcus bovis/Streptococcus equinus complex (SBSEC). Interestingly, Streptococcus macedonicus, which is a member of SBSEC, has been suggested to be adapted to milk and to be nonpathogenic. However, the species is phylogenetically related to Streptococcus gallolyticus and Streptococcus pasteurianus (formerly known as S. bovis biotypes I and II.2, respectively), which in turn are considered pathogenic, since they have been implicated in endocarditis and colon cancer in humans. Comparative analysis of the S. macedonicus genome with the complete genomes of its related streptococci (including that of S. infantarius, which is also a dairy isolate) indicated that a significant portion of the genomic organization has been conserved overall. Following a gene presence/absence strategy, we determined that S. macedonicus shows a reduced capacity to reside in the gastrointestinal tract of ruminants when compared to S. gallolyticus since it misses important genes for metabolizing complex carbohydrates of plant origin and for detoxifying this environment. S. macedonicus also lacks several pathogenicity traits found in S. gallolyticus. For example from the three pilus gene clusters (pil1, pil2, pil3), which may mediate the binding of S. gallolyticus to the extracellular matrix, S. macedonicus carries only one (i.e. the pil3). Gene gain events are also evident in the S. macedonicus genome sometimes originating from dairy bacteria, like the acquisition of the lactococcal plasmid pSMA198. Functional analysis of the S. macedonicus genome is necessary to further assess its pathogenic and technological potential

    Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model

    Get PDF
    Caveolin‑1 (Cav‑1) expression has been shown to be associated with tumor growth and resistance to chemotherapy in pancreatic cancer. The primary aim of this study was to explore the significance of Cav‑1 expression in pancreatic cancer cells as compared to fibroblasts in relation to cancer cell proliferation and chemoresistance, both in vitro and in vivo, in an immunodeficient mouse model. We also aimed to evaluate the immunohistochemical expression of Cav‑1 in the epithelial and stromal component of pancreatic cancer tissue specimens. The immunohistochemical staining of poorly differentiated tissue sections revealed a strong and weak Cav‑1 expression in the epithelial tumor cells and stromal fibroblasts, respectively. Conversely, the well‑differentiated areas were characterized by a weak epithelial Cav‑1 expression. Cav‑1 downregulation in cancer cells resulted in an increased proliferation in vitro; however, it had no effect on chemoresistance and growth gain in vivo. By contrast, the decreased expression of Cav‑1 in fibroblasts resulted in a growth advantage and the chemoresistance of cancer cells when they were co‑injected into immunodeficient mice to develop mixed fibroblast/cancer cell xenografts. On the whole, the findings of this study suggest that the downregulation of Cav‑1 in fibroblasts is associated with an increased tumor proliferation rate in vivo and chemoresistance. Further studies are warranted to explore whether the targeting of Cav‑1 in the stroma may represent a novel therapeutic approach in pancreatic cancer

    Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis

    Get PDF
    BACKGROUND: We sought to investigate the diagnostic yield and mutation spectrum in previously reported genes for early-onset epilepsy and disorders of severe developmental delay. METHODS: In 400 patients with these disorders with no known underlying aetiology and no major structural brain anomaly, we analysed 46 genes using a combination of targeted sequencing on an Illumina MiSeq platform and targeted, exon-level microarray copy number analysis. RESULTS: We identified causative mutations in 71/400 patients (18%). The diagnostic rate was highest among those with seizure onset within the first two months of life (39%), although overall it was similar in those with and without seizures. The most frequently mutated gene was SCN2A (11 patients, 3%). Other recurrently mutated genes included CDKL5, KCNQ2, SCN8A (six patients each), FOXG1, MECP2, SCN1A, STXBP1 (five patients each), KCNT1, PCDH19, TCF4 (three patients each) and ATP1A3, PRRT2 and SLC9A6 (two patients each). Mutations in EHMT1, GABRB3, LGI1, MBD5, PIGA, UBE3A and ZEB2 were each found in single patients. We found mutations in a number of genes in patients where either the electroclinical features or dysmorphic phenotypes were atypical for the identified gene. In only 11 cases (15%) had the clinician sufficient certainty to specify the mutated gene as the likely cause before testing. CONCLUSIONS: Our data demonstrate the considerable utility of a gene panel approach in the diagnosis of patients with early-onset epilepsy and severe developmental delay disorders., They provide further insights into the phenotypic spectrum and genotype-phenotype correlations for a number of the causative genes and emphasise the value of exon-level copy number testing in their analysis

    Measurement of Inverse Pion Photoproduction at Energies Spanning the N(1440) Resonance

    Full text link
    Differential cross sections for the process pi^- p -> gamma n have been measured at Brookhaven National Laboratory's Alternating Gradient Synchrotron with the Crystal Ball multiphoton spectrometer. Measurements were made at 18 pion momenta from 238 to 748 MeV/c, corresponding to E_gamma for the inverse reaction from 285 to 769 MeV. The data have been used to evaluate the gamma n multipoles in the vicinity of the N(1440) resonance. We compare our data and multipoles to previous determinations. A new three-parameter SAID fit yields 36 +/- 7 (GeV)^-1/2 X 10^-3 for the A^n_1/2 amplitude of the P_11.Comment: 14 pages, 8 figures, submitted to PR

    Novel interactions of Selenium Binding Protein family with the PICOT containing proteins AtGRXS14 and AtGRXS16 in Arabidopsis thaliana

    Get PDF
    During abiotic stress the primary symptom of phytotoxicity can be ROS production which is strictly regulated by ROS scavenging pathways involving enzymatic and non-enzymatic antioxidants. Furthermore, ROS are well described secondary messengers of cellular processes, while during the course of evolution, plants have accomplished high degree of control over ROS and used them as signalling molecules. Glutaredoxins (GRXs) are small and ubiquitous glutathione (GSH) -or thioredoxin reductase (TR)-dependent oxidoreductases belonging to the thioredoxin (TRX) superfamily which are conserved in most eukaryotes and prokaryotes. In Arabidopsis thaliana GRXs are subdivided into four classes playing a central role in oxidative stress responses and physiological functions. In this work, we describe a novel interaction of AtGRXS14 with the Selenium Binding Protein 1 (AtSBP1), a protein proposed to be integrated in a regulatory network that senses alterations in cellular redox state and acts towards its restoration. We further show that SBP protein family interacts with AtGRXS16 that also contains a PICOT domain, like AtGRXS14.Microbial Biotechnolog

    Polarization transfer in the d(epol,e' ppol)n reaction up to Q^2=1.61 (GeV/c)^2

    Full text link
    The recoil proton polarization was measured in the d(epol,e' ppol)n reaction in Hall A of the Thomas Jefferson National Accelerator Facility (JLab). The electron kinematics were centered on the quasielastic peak (x_{Bj}~1) and included three values of the squared four-momentum transfer, Q^2=0.43, 1.00 and 1.61 (GeV/c)^2. For Q^2=0.43 and 1.61 (GeV/c)^2, the missing momentum, p_m, was centered at zero while for Q^2=1.00 (GeV/c)^2 two values of p_m were chosen: 0 and 174 MeV/c. At low p_m, the Q^2 dependence of the longitudinal polarization, P_z', is not well described by a state-of-the-art calculation. Further, at higher p_m, a 3.5 sigma discrepancy was observed in the transverse polarization, P_x'. Understanding the origin of these discrepancies is important in order to confidently extract the neutron electric form factor from the analogous d(epol,e' npol)p experiment.Comment: 6 pages, 4 figures; updated text, figures and table

    Subthreshold rho^0 photoproduction on 3He

    Full text link
    A large reduction of the rho^0 mass in the nuclear medium is reported, inferred from dipion photoproduction spectra in the 1 GeV region, for the reaction 3He(gamma,pi+ pi-)X with a 10% duty factor tagged-photon beam and the TAGX multi-particle spectrometer. The energy range covered (800 < E(gamma) < 1120 MeV) lies mostly below the free rho^0 production threshold, a region which is believed sensitive to modifications of light vector-meson properties at nuclear-matter densities. The rho^0 masses extracted from the MC fitting of the data, m*(rho^0) = 642 +/- 40, 669 +/- 32, and 682 +/- 56 MeV/c^2 for E(gamma) in the 800-880, 880-960, and 960-1040 MeV regions respectively, are independently corroborated by a measured, assumption-free, kinematical observable. This mass shift, far exceeding current mean-field driven theoretical predictions, may be suggestive of rho^0 decay within the range of the nucleonic field.Comment: 40 pages, 13 figures, submitted to Phys. Rev.
    • …
    corecore