2,431 research outputs found

    Sensory Motor Remapping of Space in Human-Machine Interfaces

    Get PDF
    Studies of adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. These studies have also pointed out that adaptation to novel dynamics is aimed at preserving the trajectories of a controlled endpoint, either the hand of a subject or a transported object. We review some of these experiments and present more recent studies aimed at understanding how the motor system forms representations of the physical space in which actions take place. An extensive line of investigations in visual information processing has dealt with the issue of how the Euclidean properties of space are recovered from visual signals that do not appear to possess these properties. The same question is addressed here in the context of motor behavior and motor learning by observing how people remap hand gestures and body motions that control the state of an external device. We present some theoretical considerations and experimental evidence about the ability of the nervous system to create novel patterns of coordination that are consistent with the representation of extrapersonal space. We also discuss the perspective of endowing human–machine interfaces with learning algorithms that, combined with human learning, may facilitate the control of powered wheelchairs and other assistive devices

    Analysis of Resource Use Efficiency in Smallholder Mixed Crop-Livestock Agricultural Systems: Empirical Evidence from the Central Highlands of Ethiopia

    Get PDF
    The study uses data generated through a survey from rural households in Ethiopian central highland districts to assess farm-level resource use efficiency in the production of major crops including teff, wheat and chickpea in the mixed crop-livestock agricultural systems of Ethiopia, under conditions of diminishing land resource and environmental constraints. Data Envelopment Analysis (DEA) results show that smallholder farmers are resource use inefficient in the production of major crops with mean technical, allocative and economic efficiency levels of 0.74, 0.68 and 0.50, respectively. A Tobit model regression results on the determinants of inefficiency reveal that livestock ownership and participation in off-farm activities are associated with reduced level of resource use inefficiency. Furthermore, large family size and membership to associations contribute to higher level of resource use inefficiency. The findings suggest that resource use efficiency would be significantly improved through a better integrated livestock and crop production systems; expansion and promotion of off-farm activities; and reform of farmer’s associations. Keywords: Data Envelopment Analysis; Tobit; Resource use efficiency; mixed crop-livestock agriculture; Ethiopi

    The dynamics of motor learning through the formation of internal models

    Get PDF
    A medical student learning to perform a laparoscopic procedure or a recently paralyzed user of a powered wheelchair must learn to operate machinery via interfaces that translate their actions into commands for an external device. Since the user\u2019s actions are selected from a number of alternatives that would result in the same effect in the control space of the external device, learning to use such interfaces involves dealing with redundancy. Subjects need to learn an externally chosen many-to-one map that transforms their actions into device commands. Mathematically, we describe this type of learning as a deterministic dynamical process, whose state is the evolving forward and inverse internal models of the interface. The forward model predicts the outcomes of actions, while the inverse model generates actions designed to attain desired outcomes. Both the mathematical analysis of the proposed model of learning dynamics and the learning performance observed in a group of subjects demonstrate a first-order exponential convergence of the learning process toward a particular state that depends only on the initial state of the inverse and forward models and on the sequence of targets supplied to the users. Noise is not only present but necessary for the convergence of learning through the minimization of the difference between actual and predicted outcomes

    Application of Functional Theory of Political Discourse in Chilean presidential debates to determine the influence of journalists in the contents

    Get PDF
    Within the growing academic interest over electoral debates, the role of the journalists who conduct the debates in determining the tenor of the answers has not been sufficiently studied. We used Chile as an extreme case, given the predominant role that the debate moderators receive here, thanks to the “journalistic panel” format utilized in them, where they take turns to interview the candidates. As a framework to describe these contents, we used Functional Theory of Political Discourse by William Benoit. Our data show that, indeed, the candidates use different combinations of said functions, depending on the different frameworks established by the rules for each debate. Clearly, the candidates tend to defend themselves from the attacks of the journalists, rather than their rivals’; and they use other strategies when the rules allow them more freedom

    Predicting the mechanism of phospholipidosis.

    Get PDF
    The mechanism of phospholipidosis is still not well understood. Numerous different mechanisms have been proposed, varying from direct inhibition of the breakdown of phospholipids to the binding of a drug compound to the phospholipid, preventing breakdown. We have used a probabilistic method, the Parzen-Rosenblatt Window approach, to build a model from the ChEMBL dataset which can predict from a compound's structure both its primary pharmaceutical target and other targets with which it forms off-target, usually weaker, interactions. Using a small dataset of 182 phospholipidosis-inducing and non-inducing compounds, we predict their off-target activity against targets which could relate to phospholipidosis as a side-effect of a drug. We link these targets to specific mechanisms of inducing this lysosomal build-up of phospholipids in cells. Thus, we show that the induction of phospholipidosis is likely to occur by separate mechanisms when triggered by different cationic amphiphilic drugs. We find that both inhibition of phospholipase activity and enhanced cholesterol biosynthesis are likely to be important mechanisms. Furthermore, we provide evidence suggesting four specific protein targets. Sphingomyelin phosphodiesterase, phospholipase A2 and lysosomal phospholipase A1 are shown to be likely targets for the induction of phospholipidosis by inhibition of phospholipase activity, while lanosterol synthase is predicted to be associated with phospholipidosis being induced by enhanced cholesterol biosynthesis. This analysis provides the impetus for further experimental tests of these hypotheses.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Cytochrome P450 site of metabolism prediction from 2D topological fingerprints using GPU accelerated probabilistic classifiers.

    Get PDF
    BACKGROUND: The prediction of sites and products of metabolism in xenobiotic compounds is key to the development of new chemical entities, where screening potential metabolites for toxicity or unwanted side-effects is of crucial importance. In this work 2D topological fingerprints are used to encode atomic sites and three probabilistic machine learning methods are applied: Parzen-Rosenblatt Window (PRW), Naive Bayesian (NB) and a novel approach called RASCAL (Random Attribute Subsampling Classification ALgorithm). These are implemented by randomly subsampling descriptor space to alleviate the problem often suffered by data mining methods of having to exactly match fingerprints, and in the case of PRW by measuring a distance between feature vectors rather than exact matching. The classifiers have been implemented in CUDA/C++ to exploit the parallel architecture of graphical processing units (GPUs) and is freely available in a public repository. RESULTS: It is shown that for PRW a SoM (Site of Metabolism) is identified in the top two predictions for 85%, 91% and 88% of the CYP 3A4, 2D6 and 2C9 data sets respectively, with RASCAL giving similar performance of 83%, 91% and 88%, respectively. These results put PRW and RASCAL performance ahead of NB which gave a much lower classification performance of 51%, 73% and 74%, respectively. CONCLUSIONS: 2D topological fingerprints calculated to a bond depth of 4-6 contain sufficient information to allow the identification of SoMs using classifiers based on relatively small data sets. Thus, the machine learning methods outlined in this paper are conceptually simpler and more efficient than other methods tested and the use of simple topological descriptors derived from 2D structure give results competitive with other approaches using more expensive quantum chemical descriptors. The descriptor space subsampling approach and ensemble methodology allow the methods to be applied to molecules more distant from the training data where data mining would be more likely to fail due to the lack of common fingerprints. The RASCAL algorithm is shown to give equivalent classification performance to PRW but at lower computational expense allowing it to be applied more efficiently in the ensemble scheme.The authors would like to thank Unilever for funding. We thank Dr. Guus Duchateau, Leo van Buren and Prof. Werner Klaffke for useful discussions in the development of this work.This is the final version. It was first published by Chemistry Central at http://www.jcheminf.com/content/6/1/29
    corecore