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Predicting the mechanism of phospholipidosis
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Abstract

The mechanism of phospholipidosis is still not well understood. Numerous different mechanisms have been
proposed, varying from direct inhibition of the breakdown of phospholipids to the binding of a drug compound
to the phospholipid, preventing breakdown. We have used a probabilistic method, the Parzen-Rosenblatt Window
approach, to build a model from the ChEMBL dataset which can predict from a compound’s structure both its
primary pharmaceutical target and other targets with which it forms off-target, usually weaker, interactions. Using a
small dataset of 182 phospholipidosis-inducing and non-inducing compounds, we predict their off-target activity
against targets which could relate to phospholipidosis as a side-effect of a drug. We link these targets to specific
mechanisms of inducing this lysosomal build-up of phospholipids in cells. Thus, we show that the induction of
phospholipidosis is likely to occur by separate mechanisms when triggered by different cationic amphiphilic drugs.
We find that both inhibition of phospholipase activity and enhanced cholesterol biosynthesis are likely to be
important mechanisms. Furthermore, we provide evidence suggesting four specific protein targets. Sphingomyelin
phosphodiesterase, phospholipase A2 and lysosomal phospholipase A1 are shown to be likely targets for the
induction of phospholipidosis by inhibition of phospholipase activity, while lanosterol synthase is predicted to be
associated with phospholipidosis being induced by enhanced cholesterol biosynthesis. This analysis provides the
impetus for further experimental tests of these hypotheses.

Background
Since the observation of phospholipidosis by Nelson and
Fitzhugh in 1948 [1], many attempts have been made at
understanding the underlying mechanism(s) [2,3]. Phos-
pholipidosis is the excess accumulation of phospholipids
induced in several cell types by numerous cationic
amphiphilic drugs (CADs). The most reliable way of
determining whether a compound has induced phospho-
lipidosis is by electron microscopy. This analysis is
important in the drug development process where the
occurrence of phospholipidosis can cause delays and
possibly termination of a project (as more tests need to
be carried out to satisfy regulatory bodies). It is still
unclear whether an accumulation of phospholipids is
harmful to human health [4], the process is often rever-
sible upon withdrawal of the compound, and despite
attempts to understand the mechanism of phospholipi-
dosis there is still no mechanistic understanding of how

CADs can induce the accumulation of phospholipids in
various cell types across different species.
A build-up of phospholipids can be explained by an

inhibition of the breakdown or an increase in the synth-
esis of the phospholipids. Early studies supported the
idea that inhibition of the breakdown of phospholipids
was a possible mechanism. Hostetler et al. [2] showed
strong support for the theory that the action of CADs
was located in the lysosomes and that inhibition of the
lysosomal phospholipases A and C caused a build-up of
phospholipids. However, there was no way to distinguish
between a drug-enzyme or drug-phospholipid binding
event as the cause of the inhibition. Joshi et al. [5] tried
to address this problem by measuring binding of phos-
pholipidosis-inducing drugs to L-a-dipalmitoyl phospha-
tidylcholine vesicles. This suggested that if a drug was
found to bind, then drug-phospholipid binding would be
the cause of the inhibition of the phospholipases. While
most of the drugs tested did bind to L-a-dipalmitoyl
phosphatidylcholine vesicles, chloroquine (a phospholi-
pidosis-inducing CAD) did not bind, suggesting that its
main mechanism is the direct inhibition of one or more
phospholipase enzymes. Abe et al. [6] produced the first
study that distinguished between lysosomal
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phospholipases A1 and A2. This showed that two CADs,
amiodarone and D-threo-1-phenyl-2-decanoylamino-3-
morpholino-1-propanol, caused inhibition of lysosomal
phospholipase A2. They found that no inhibition
occurred on exposure to tetracycline, despite its being a
CAD. Hirode et al. [7], however, found evidence that at
high doses tetracycline may induce phospholipidosis.
Further studies on lysosomal phospholipase A2 inhibi-
tion by CADs have been performed in which Hiraoka et
al. [3] used lysosomal phospholipase A2 (LYPLA2)-defi-
cient mice to study the relationship between LYPLA2
and phospholipidosis. A deficiency of the enzyme
resulted in foam cell formation, surfactant lipid accumu-
lation, splenomegaly (enlargement of the spleen), and
phospholipidosis. A smaller number of studies have also
looked at the possibility of increased synthesis of phos-
pholipids being the mechanism for phospholipidosis by
showing that an increase or redirection of synthesis
leads to increased amounts of acidic phospholipids [8,9].
Reasor et al. [4] produced a review on the subject sug-

gesting that no single underlying mechanism covers all
phospholipidosis-inducing compounds. Phospholipidosis
is not organ specific [10], however, it can be species spe-
cific where certain drugs cause phospholipidosis in one
species and not in another. This implies that the
mechanism for phospholipidosis may be highly complex
and species dependent. Sawada et al. [11] recently sum-
marised four possible mechanisms suggested by their
toxicogenomics experiments:
1. Inhibition of lysosomal phospholipase activity;
2. Inhibition of lysosomal enzyme transport;
3. Enhanced phospholipid biosynthesis;
4. Enhanced cholesterol biosynthesis.
Attempts have been made to predict the occurrence of

phospholipidosis using in silico methods. Ploemen et al.
[12] suggested that a compound would be phospholipi-
dosis-inducing (PPL+) provided that it has pKa > 8 and
ClogP > 1 and that the sum of the squares (ClogP2 +
pKa

2) is greater than 90, showing that ClogP and pKa

are important descriptors. Other authors have developed
increasingly sophisticated models, introducing more
complicated Quantitative Structure-Property Relation-
ship (QSPR) methods and descriptors [13-15].
In this study, our aim is to use an in silico approach

to predict the possible targets that may be relevant for
phospholipidosis. By predicting the targets for a data-
base of phospholipidosis-inducing compounds, we can
rank targets by their potential to cause phospholipidosis
and compare them to targets previously suggested.
The study of off-target interactions, known as second-

ary pharmacology, is now recognised as crucial to the
understanding of both drug action and toxicology. In
favourable cases, one drug may modulate plural disease-
relevant targets, a property known as polypharmacology.

More commonly, off-target interactions present the risk
of side-effects, as is the case with phospholipidosis.
Given the prevalence, expense, and risk to patients asso-
ciated with unforeseen side-effects related to drug-target
interactions, studies in this area have particular rele-
vance to the pharmaceutical industry.
This study uses a methodology more complex than

many seen in cheminformatics. Our objective is not
simply to appeal to the similar property principle. A
prediction based on that would run something like this:
molecule B is similar to molecule A, which induces
phospholipidosis, hence we predict that molecule B
induces phospholipidosis too. Here, by way of contrast,
we are interested in teasing out a mechanistic under-
standing much richer than can be obtained by similarity
searching or QSPR. Thus, our interest is in predicting
compound-target associations that will allow us to
understand how phospholipidosis is induced and in sug-
gesting and informing experimental approaches directed
towards gaining a deeper mechanistic understanding.

Materials and methods
The ChEMBL database [16] was mined for compounds
and their related protein targets. A number of rules
were used to filter the dataset. Only compounds which
had an associated structure were selected. If the target
description included the word “enzyme”, “cytosolic”,
“receptor”, “agonist” or “ion channel” and the bioactivity
record of the compound contained an IC50, Ki or Kd <
500 μM or had an activity > 50% binding affinity, then
it was selected. Of course, we recognise that differences
between these measures may sometimes be significant;
for instance, Ki and Kd are not strictly equivalent quan-
tities. This selection process produced a dataset which
consisted of compounds and their corresponding targets,
where a compound may be related to more than one
target. A relatively high IC50, Ki or Kd threshold was
used as the aim of the study is to look at off-target pre-
diction and therefore potentially weak binding targets.
This approach selected a total of 249358 compounds
which are related to a total of 3493 different targets. A
further stipulation was that for a target to be present in
the dataset it must have at least 20 compounds asso-
ciated with it. This reduced the total dataset to 241145
compounds with 1923 different targets. In other words,
the procedure yields N (= 241145) molecules belonging
to M (= 1923) classes.
In the following discussion, the molecules are repre-

sented by pattern vectors (descriptors) xj of dimension d
with j = 1, 2, ... N; ωa denotes the classes with a = 1, 2,
... , M. In this work the descriptors used for the mole-
cules were circular fingerprints [17]. To build a predic-
tive model, the Parzen-Rosenblatt Window method [18]
was used as the basis of a multi-class classification
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algorithm. For each possible class ωa, we used the Par-
zen-Rosenblatt Window scheme to estimate the average
similarity of the test molecule xi to the training set
molecules in that class (say) xj Î ωa with similarity
being measured by the kernel function K(xi, xj) as

Si
α =

1
Nα

∑
xj∈ ωα

K
(
xi, xj

)
, (1)

where Na denotes the number of the training data
instances belonging to class ωa and the kernel function
is as defined below. We wish to rank the classes for
each compound according to our best estimates of the
class probabilities p(ωa |xi), the probabilities of the
molecule being associated with each specific protein tar-
get. From Bayes’ theorem, we can relate p(ωa |xi) to p
(xi |ωa), the class-condition probability density (mass)
function for molecule xi given that it comes from class
ωa , as follows:

p(ωα|xi) =
p(ωα)p(xi|ωα)

p(xi)
(2)

Since, for a given molecule, p(xi) takes a constant
value for all classes, ranking the classes by p(ωa |xi) is
equivalent to ranking them according to the product p
(ωa)×p(xi |ωa). This is a convenient approach, since
both p(ωa) and p(xi |ωa) are relatively easy to estimate.
We take p(ωa) to be equal to the proportion of training
set molecules belonging to that class, given by Na/N. It
is assumed that p(xi |ωa) is directly proportional to Sia,
the measure of average similarity, as described in equa-
tions (1) and (3)

p(xi|ωα) =
1

Nα

∑
xj∈ ωα

K
(
xi, xj

)
. (3)

As well as the top-ranked class, effectively a prediction
of the primary pharmaceutical target of a drug, we are
equally interested in lower ranked predictions corre-
sponding to off-target interactions potentially causing
side-effects. We choose the Gaussian kernel

K(xi, xj) =
1

(h2
√

π)d
exp

(
−(xi − xj)

T(xi − xj)

2h2

)
, (4)

where (xi - xj)
T(xi - xj) corresponds to the number of

features in which xi and xj disagree, while h is the so-
called smoothing factor. In the scenario where equal
probabilities are calculated for two classes, p(ωa)×p(xi
|ωa) = p(ωa)×p(xi |ωa), these classes are ranked
arbitrarily.
The mined ChEMBL dataset was partitioned into ten

randomly split training and validation partitions, the size
of which was determined by 99% of each class being

present in the training and 1% in the validation set. For
classes with fewer than 100 instances, a single instance
was present in the validation and the rest in the training
set. This produces a training data set with 238086 com-
pounds and a validation set of 3059 compounds for
each of the ten partitions. The Parzen-Rosenblatt Win-
dow method was applied to each of the ten splits with
the smoothing factor h being varied according to 2-15, 2-
13, ... , 23. We also carried out analogous calculations
using the Naïve Bayes method, implemented as
described in reference [19], allowing us to compare the
results from these two techniques.
The ten different models produced on the ten differ-

ent training partitions were then used to predict the tar-
gets of a phospholipidosis dataset with the Parzen-
Rosenblatt Window method. The dataset consists of 182
compounds (100 are positive (PPL+) for phospholipido-
sis and 82 are negative (PPL-)) with a label indicating
whether a compound is positive and induces phospholi-
pidosis or is labelled negative and is experimentally con-
firmed to not induce it. We emphasise that all positives
and negatives in our data are experimentally confirmed
as such; there are no unverified assumed negatives. The
data were primarily derived from Pelletier et al. [14],
with a number of additional molecules taken from other
literature sources such as [20], and are almost identical
to the dataset we used in [15]. The full dataset is pre-
sented as Additional File 1. We note that an instance is
a compound-target relation and not simply a compound,
so another target association of a compound from the
phospholipidosis dataset may appear in our training set.
As we are interested in obtaining as comprehensive as
possible a set of targets for these compounds, the other
known compound-target relations were not removed
from the training set. Our approach allows experimen-
tally known associations of these 182 compounds with
other targets, not directly relevant to phospholipidosis,
to contribute to our predictions. From the targets pre-
dicted for each compound, the top 100 were used as
this corresponds to approximately 5% of the total tar-
gets. As we are interested in off-targets, the order in
which the targets were predicted for each compound is
of limited interest here and hence a scoring system was
designed to account for this. For the phospholipidosis
dataset we have a label, cp, which represents whether a
compound, xi, is PPL+ (cp(xi)=+1) or PPL- (cp(xi)=-1).
For each target, ωa, we calculate the phospholipidosis
score PSa using equation (5):

PSα =
N∑

i=1

Cp(xi)δ(ωα) (5)

where δ(ωa) = 1 if ωa is in the top 100 predictions or
0 otherwise, and N is the total number of compounds in
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the phospholipidosis dataset. The PSa score reported is
a sum over the ten different models. A diagrammatic
overview of our methodology is given in Figure 1.

Results
The output recorded from the prediction of the valida-
tion compounds was the rank order of classes based on
their estimated values of the product p(ωa)×p(xi |ωa).
The class with the highest probability was given a rank
of 1, the second highest a rank of 2 and so on. To cal-
culate the optimum smoothing parameter, the arith-
metic mean of the rank of the actual class for the
validation set was calculated. The smoothing factor h =
2-3 produces the top average rank compared to the
other smoothing factors tried and hence was used for
the rest of the paper. Table 1 shows the arithmetic
mean of the predicted ranks of actual experimentally
known classes, calculated across the ten validation parti-
tions with this smoothing parameter. Since this Table
measures the prediction performance of our machine

Figure 1 Study methodology. This Figure shows the overall methodology of mining ChEMBL, generating ten separate cross-validated models,
applying these to the phospholipidosis dataset, and obtaining the PSa scores.

Table 1 Comparison of the Parzen-Rosenblatt Window
and Naïve Bayes methods

Partition No. PRW Rank NB Rank

1 17.049 74.104

2 16.343 76.251

3 18.424 79.078

4 16.212 73.539

5 17.339 73.535

6 18.630 77.244

7 20.694 78.560

8 18.870 74.464

9 16.584 76.235

10 18.200 78.077

Average 17.835 76.109

Average ranks of known targets as predicted in the 10-fold cross-validation by
the Parzen-Rosenblatt Window [18] and by a Naïve Bayes method [19]. The
Parzen-Rosenblatt Window, using h = 2-3, consistently assigns better ranks to
the known targets, its predicted ranks being numerically smaller by a factor of
4.3.
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learning method, we excluded all data for validation
compounds from the respective training sets. We also
calculated predicted ranks in an exactly analogous way
by 10-fold cross-validation using the Naïve Bayes
method; these results are also shown in Table 1. The
Parzen-Rosenblatt Window consistently assigns better
ranks to the known targets, its predicted ranks being
numerically smaller by a factor of 4.3. The calculated p-
value of p = 2.889 × 10-15 confirms that at the 5% sig-
nificance level the mean of the average rank from the
Parzen-Rosenblatt Window is statistically significantly
smaller than the mean of the average rank from Naïve
Bayes. Hence, we did not consider Naïve Bayes further
and used only the Parzen-Rosenblatt Window in the
phospholipidosis part of the study.
Table 2 shows the top 20 scoring targets and their

phospholipidosis scores PSa. The PSa score is the total
score for a target across all 182 compounds over the ten
models derived from the ten different partitions of the
ChEMBL dataset. A large number of the targets that
score highly are CNS (central nervous system) type tar-
gets, such as the sodium-dependent serotonin transpor-
ters, dopamine receptors and serotonin receptors, which
are often the primary pharmaceutical targets of CADs.

The PSa scores for all 1923 targets are given in Addi-
tional File 2.

Discussion
The average ranks of the actual targets in the validation
set in Table 1 show that the models are on average able
to predict the correct target in the top 1%. This suggests
that using high IC50, Ki and Kd values, which corre-
spond to low activity, to select the dataset still allows
for good predictive models and hence that it is possible
to predict weak binding. If the cut-off is increased to
the top 5% of targets, then an increase is seen from
96.1% of the actual targets being present amongst those
predicted to 98.8%. It was therefore decided to use the
top 5% of targets (actually 100/1923) for the phospholi-
pidosis dataset prediction. Using this higher number
allows for more of the off-targets to be selected; as the
top predicted targets will often be the intended drug tar-
get of the cationic amphiphilic drug (CAD) or targets
closely related to it.
None of the expected phospholipidosis-relevant targets

appear in the top 20 ranked targets using the PSa score.
The highest scoring target that had been previously sug-
gested was lanosterol synthase (LSS), which is in a tie
for rank 114. A large number of the highly placed tar-
gets in our PSa rankings are the intended drug targets
of CADs, which can be used as antiarrhythmics, a-
blockers and antipsychotics targeting ion channel trans-
porters (such as sodium-dependent serotonin transpor-
ter) [21], as well as D2/D3 dopamine and serotonin
receptors [10]. We also note that a number of the tar-
gets are within the same protein family and hence these
fill a large number of the higher ranked positions.
Importantly for our work, consideration of known

biochemical function allows us to link predicted targets
to particular mechanisms of inducing phospholipidosis.
Sawada et al. [11] previously suggested a number of
genes relevant to each of their proposed mechanisms
and Table 3 shows the ranks of some of the related
targets according to their PSa scores. We also note
that muscarinic acetylcholine receptors M1, M3 and
M5 up-regulate phospholipase C, which if inhibited
directly can lead to phospholipidosis. Therefore it
could be expected that inhibition of the appropriate
muscarinic acetylcholine receptors could lead to
decreased production of phospholipase C and hence
phospholipidosis by a more complex variant of
mechanism 1. The M5 and M1 receptors appear
amongst the top 20 ranked targets in 9th and joint 16th

positions, respectively; M3 is ranked joint 32nd. Since
they were not part of any of our original mechanistic
hypotheses based on Sawada et al.’s work, however, we
exclude the M1, M3 and M5 receptors from the dis-
cussion which follows.

Table 2 Top 20 PSa scores for targets

Rank Name PSa

1 5-hydroxytryptamine receptor 2B (r) 444

2 5-hydroxytryptamine receptor 2C (r) 443

3 D(2) dopamine receptor (r) 436

4 5-hydroxytryptamine receptor 1A (r) 409

5 Potassium voltage-gated channel subfamily H member 2
(h)

406

6 Sodium-dependent serotonin transporter (r) 394

7 = D(3) dopamine receptor (r) 385

7 = D(3) dopamine receptor (h) 385

9 Muscarinic acetylcholine receptor M5 (r) 379

10 Alpha-1D adrenergic receptor (r) 376

11 Alpha-1A adrenergic receptor (r) 371

12 Alpha-1B adrenergic receptor (r) 369

13 5-hydroxytryptamine receptor 2A (r) 367

14 = Sodium-dependent serotonin transporter (h) 357

14 = 5-hydroxytryptamine receptor 1B (r) 357

16 = Transporter (r) 350

16 = Muscarinic acetylcholine receptor M1 (r) 350

18 Sodium-dependent dopamine transporter (r) 349

19 Sigma 1-type opioid receptor (h) 348

20 Sodium channel protein type 2 subunit alpha (h) 347

List of the top 20 targets ranked by their PSa scores across all 182 compounds
over the ten models derived from the ten different partitions of the ChEMBL
dataset. A higher PSa score suggests that more phospholipidosis positive than
negative compounds are associated with the target. A large number of the
highly placed targets in our PSa rankings are the intended drug targets of
CADs. Each of the top 20 targets comes from either human (h) or rat (r). Tied
ranks are denoted by =.
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Table 3 shows the ranked positions of the various tar-
gets predicted by Sawada et al. Sphingomyelin phospho-
diesterase (SMPD) is responsible for the breakdown of
sphingomyelin into phosphocholine and ceramide. Inhi-
bition of SMPD would cause accumulation of the phos-
pholipid sphingomyelin. A build-up of sphingomyelin is
associated with Niemann-Pick disease which is often
linked to phospholipidosis [22]. Lysosomal phospholi-
pase A2 (LYPLA2) has previously been linked with
phospholipidosis, however, due to the lack of data in
ChEMBL it was not present in the model. Only two
compounds have an associated binding affinity with this
target and hence the target did not meet the require-
ment of having data for at least 20 compounds. LYPLA1
and phospholipase A2 (PLA2) were present in the
model and produced PSa scores of 90 and 97, respec-
tively. We expect that lysosomal phospholipase A2
would produce a similar score. Both of these targets act
by breaking down phospholipids and hence are shown
in Table 3 as being associated with mechanism 1. Since
there are no relevant targets present in the original
training data, it is not possible to comment on the likeli-
hood of mechanism 2. However, it is clear that our
model predicts that the induction of phospholipidosis
via the mechanism 3 targets ELOVL6 or SCD is unli-
kely, as neither is predicted to interact with any of the
100 positive phospholipidosis-inducing compounds. For
mechanism 4, out of the targets included in our model,
lanosterol synthase produced the best result of those
related to Sawada et al.’s mechanisms. Lanosterol
synthase is involved in steroid biosynthesis, catalysing
the cyclisation of (S)-2,3 oxidosqualene to lanosterol;
hence it is associated with enhanced cholesterol bio-
synthesis (mechanism 4).
Since three targets for mechanism 1 and one for

mechanism 4 score highly, our results suggest that a
combination of mechanisms 1 and 4 is responsible for
inducing phospholipidosis. Thus we find support, from

an independent source of evidence and a quite different
methodology, for two of the four mechanisms (1 & 4)
which Sawada et al. proposed on the basis of their gene
expression experiments. A lack of data for suitable tar-
gets meant that we could not test any targets for their
mechanism 2, while our study suggests that their
mechanism 3 does not occur via the targets ELOVL6 or
SCD. Our method can only predict drug-protein asso-
ciations and cannot predict whether phospholipidosis
will occur via drug-phospholipid binding. Therefore it
can only predict a mechanism which involves direct
interaction with the protein.
Figure 2 shows the scores for the compounds in our

phospholipidosis data set, for each of the Sawada et al.
targets. The targets for mechanism 3 have not been
included as they do not score for any of the positive com-
pounds. SMPD, LYPLA1, PLA2 and LSS show a large
number of hits amongst the positive compounds (at the
top of Figure 2) and many fewer hits for the negative
compounds (at the bottom of Figure 2). The method can-
not be 100% accurate and hence it may be expected that
a few erroneous negative hits are present, however some
of the negative hits for SMPD can be explained. Cloforex
is labelled as negative in the dataset [23] but Ryrfeldt [24]
suggested that it should be labelled as positive, and pro-
caine is a CAD which does not induce phospholipidosis,
perhaps due to its low logP.
It is also interesting to observe from Figure 2 that the

compounds which are predicted to bind to SMPD are
mostly different to those which are predicted to bind to
LSS. A Pearson correlation coefficient of -0.847 was calcu-
lated between these two targets which suggests that there
is some anti-correlation. A chi-squared test was used to
assess the null hypothesis that the compounds’ scores for
LSS and SMPD are independent. The calculated p-value is
5.76 × 10-5 and hence at the 5% significance level the null
hypothesis is rejected. The lack of independence between
the scores for these two targets, coupled with the observed

Table 3 PSa scores and ranks for phospholipidosis-relevant targets

Mechanism Target Rank PSa

1 Sphingomyelin phosphodiesterase (SMPD) (h) 225 55

Lysosomal Phospholipase A1 (LYPLA1) (r) 163 = 90

Phospholipase A2 (PLA2) (h) 152 = 97

3 Elongation of very long chain fatty acids protein 6 (ELOVL6) (h) 1203 = -10

Acyl-CoA desaturase (SCD) (m) 610 = 0

4 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) (h) 456 = 10

Squalene monooxygenase (SQLE) (h) 437 = 14

Lanosterol synthase (LSS) (h) 114 = 134

Table of the targets suggested by Sawada et al. [11] which are included in our model and their ranks based on the PSa score; tied ranks are denoted by =. The
targets are grouped into their different mechanisms: 1) Inhibition of phospholipase activity; 2) Inhibition of lysosomal enzyme transport (not represented in this
table); 3) Enhanced phospholipid biosynthesis; 4) Enhanced cholesterol biosynthesis. While Sawada et al. worked with human hepatoma HepG2 cells, [11] we also
consider the corresponding genes in other species. Where homologous ChEMBL targets from two species were part of our model, for instance both human and
rat versions of lanosterol synthase appeared, the higher scoring one is listed in this table; all its entries are from human (h), rat (r) or mouse (m).
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anti-correlation, suggests that different compounds induce
phospholipidosis via each of these two targets, which are
associated with different mechanisms. We have also inves-
tigated the correlation between scores for other pairs of
targets; the independence of scores between SMPD and
LYPLA1 has an associated p-value of 0.507, and hence at
the 5% level the null hypothesis that they are independent
is not rejected. The Pearson correlation coefficient was
calculated to be -0.247, suggesting that LYPLA1 and
SMPD are anti-correlated.
Thus our results suggest that there is strong statistical

evidence that no single target or even mechanism is
responsible for phospholipidosis. We find that both inhi-
bition of phospholipase activity and enhanced choles-
terol biosynthesis are likely to be important
mechanisms. Furthermore, this study provides evidence
that sphingomyelin phosphodiesterase, phospholipase
A2 and lysosomal phospholipase A1 are all likely targets
for the induction of phospholipidosis by inhibition of

phospholipase activity, while lanosterol synthase is
expected to be associated with phospholipidosis occur-
ring due to enhanced cholesterol biosynthesis. With
these four targets, LSS, PLA2, LYPLA1, SMPD, and
even the possible additional inclusion of muscarinic
acetylcholine receptors M1, M3 and M5, we cannot
account for all of the phospholipidosis-inducing com-
pounds. Hence, we suspect that either more targets are
involved or that compounds may induce phospholipido-
sis not only by interacting with protein targets, but also
by binding to the lipid itself. An overview of the pre-
dicted mechanisms is presented in Figure 3.

Conclusions
Using the Parzen-Rosenblatt Window method, predictive
models of protein target associations were constructed
based on compound structures. For our validation set,
experimentally known targets were ranked (on average) in
the top 1% of predicted targets. When applied to a dataset

Figure 2 Predicted interactions for phospholipidosis-relevant compounds and targets. Figure showing the score (0 - 10) for nine different
targets for each compound in the phospholipidosis dataset. The targets shown are the six Sawada targets for mechanisms 1 and 4 from Table
3, with both human (h) and rat (r) versions listed separately where data are available. A score of 10 means that the target was predicted for that
compound in each of the ten runs of the Parzen-Rosenblatt method, using the same partitions as for Table 1, and corresponds to dark blue
shading. The most prevalent light blue colour denotes a score of 0, indicating no predicted interaction in any model.
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of phospholipidosis-inducing and non-inducing com-
pounds, it was found that a number of targets may be
linked to phospholipidosis. Sphingomyelin phosphodies-
terase, lysosomal phospholipase A1, phospholipase A2 and
lanosterol synthase all score highly according to our phos-
pholipidosis score, PSa. It was shown that predicted activ-
ities against different targets are often uncorrelated or
even anti-correlated. More simply put, different phospholi-
pidosis-inducing compounds are predicted to interact with
different putative phospholipidosis-relevant targets. This
strongly suggests that different compounds induce phos-
pholipidosis via different targets, and therefore also by dif-
ferent mechanisms. We note that, considering only the
four different targets found to be significant here, there
remain a number of PPL+ compounds for which a rele-
vant target cannot be identified. This may indicate that
further protein targets are mechanistically relevant, or that
binding of the compound directly to the lipid is a possible
mechanism.

Additional material

Additional file 1: The phospholipidosis dataset of 182 compounds.
We present the names, SMILES strings and phospholipidosis-inducing
status of the 182 molecules; the file is in .xls format.

Additional file 2: PSa scores and ranks for all 1923 targets. All 1923
targets ranked by their PSa scores across all 182 compounds over the
ten models derived from the ten different partitions of the ChEMBL
dataset. A higher PSa score suggests that more phospholipidosis positive
than negative compounds are associated with the target; the numbers
of positive and negative compound associations contributing to each
target’s PSa score are also shown in this Table, which is in .xls format.
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