11 research outputs found

    Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition

    Get PDF
    This version does not correspond to the published one. To access the final version go to: http://www.springerlink.com/content/t8t302617003m078/Urbanization and industrial activities have contributed to widespread contamination by metals and polycyclic aromatic hydrocarbons, but the combined effects of these toxics on aquatic biota and processes are poorly understood. We examined the effects of cadmium (Cd) and phenanthrene on the activity and diversity of fungi associated with decomposing leaf litter in streams. Leaves of Alnus glutinosa were immersed for 10 days in an unpolluted low-order stream in northwest Portugal to allow microbial colonization. Leaves were then exposed in microcosms for 14 days to Cd (0.06–4.5 mg L−1) and phenanthrene (0.2 mg L−1) either alone or in mixture. A total of 19 aquatic hyphomycete species were found sporulating on leaves during the whole study. The dominant species was Articulospora tetracladia, followed by Alatospora pulchella, Clavatospora longibrachiata, and Tetrachaetum elegans. Exposure to Cd and phenanthrene decreased the contribution of A. tetracladia to the total conidial production, whereas it increased that of A. pulchella. Fungal diversity, assessed as denaturing gradient gel electrophoresis fingerprinting or conidial morphology, was decreased by the exposure to Cd and/or phenanthrene. Moreover, increased Cd concentrations decreased leaf decomposition and fungal reproduction but did not inhibit fungal biomass production. Exposure to phenanthrene potentiated the negative effects of Cd on fungal diversity and activity, suggesting that the co-occurrence of these stressors may pose additional risk to aquatic biodiversity and stream ecosystem functioning.The Portuguese Foundation for the Science and Technology supported this work (POCI/MAR/56964/2004) and S. Duarte (SFRH/BPD/47574/2008

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Get PDF
    Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Full text link

    One-year variation in quantity and properties of microplastics in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule) from Aveiro lagoon

    No full text
    As filter feeders, marine bivalves inhabiting estuarine and coastal areas are directly exposed to microplastics (MPs) in water. To assess whether MPs number, and their shape, size, colour, and polymer type present in mussels (Mytilus galloprovincialis) and cockles (Cerastoderma edule) varied over one year, bivalves were collected over the year of 2019 in the lower part of the coastal Aveiro lagoon, Portugal. After extraction from the bivalve's whole-body soft tissues, a subset of the visually inspected particles was randomly separated for identification using the Fourier-transform mid-infrared (FT-MIR) spectroscopy. A fraction of the inspected particles, 26-32% of particles >100â€ŻÎŒm, and 59-100% of smaller ones were confirmed as MPs. Concentrations varied within the intervals of 0.77-4.3 items g-1 in mussels and 0.83-5.1 items g-1 in cockles, with the lowest values observed in January. In winter, the accumulation of large-sized fibers was composed of a mixture of plastic types, which contrasted against the most abundant MPs in summer consisting mainly of polyethylene of diverse size classes and shapes. Temperature decrease registered in winter might have triggered a lower filtration rate, resulting in lower MPs concentrations in the whole-soft body tissues of organisms. Different properties of MPs found in bivalves between January-February and August-September appear to reflect changes in the characteristics of MPs available in the Aveiro lagoon.publishe

    Efficient Catalytic Oxidation of 3-Arylthio- and 3-Cyclohexylthio-lapachone Derivatives to New Sulfonyl Derivatives and Evaluation of Their Antibacterial Activities

    No full text
    New sulfonyl-lapachones were efficiently obtained through the catalytic oxidation of arylthio- and cyclohexylthio-lapachone derivatives with hydrogen peroxide in the presence of a Mn(III) porphyrin complex. The antibacterial activities of the non-oxidized and oxidized lapachone derivatives against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus were evaluated after their incorporation into polyvinylpyrrolidone (PVP) micelles. The obtained results show that the PVP-formulations of the lapachones 4b–g and of the sulfonyl-lapachones 7e and 7g reduced the growth of S. aureus
    corecore