241 research outputs found

    Nuclear DNA content in the subgenus Coffea (Rubiaceae) : inter and intra-specific variation in African species

    Get PDF
    La cytométrie en flux a été utilisée pour estimer la quantité d'ADN nucléaire chez 13 espèces de #Coffea (Rubiacea) originaires d'Afrique. Douze espèces diploïdes (#2n=22) et l'espèce tétraploïde #C. arabica (#2n=44) ont été analysées. Pour 77 génotypes, des populations de noyaux isolés ont été colorées par l'iodure de propidium (IP ; non spécifique des bases). Pour trente neuf génotypes, le 4',6-diamidino-2-phenylindole (DAPI; AT spécifique) a été également utilisé. Les quantités 2C d'ADN nucléaire, estimées avec l'IP, oscillent entre 0,95 et 1,78 pg. Trois groupes correspondant à des quantités croissantes d'ADN ont été mis en évidence. Les trois espèces #C. sessiliflora, C. racemosa et #C. pseudozanguebariae se classent dans le groupe des plus petites valeurs (groupe 1 : 0,90 à 1,30 pg). Les trois espèces #C. eugenioides, C. stenophylla et #C. sp. F. se rangent uniquement dans le groupe des valeurs intermédiaires (groupe 2 : 1,31 à 1,60 pg). Les autres espèces se répartissent entre le groupe 2 et le groupe des plus hautes valeurs (groupe 3 : 1,61 à 1,80 pg). Les valeurs déterminées pour les espèces de #Coffea$, sont comparées aux niveaux intra- et inter-spécifique à celles d'autres angiospermes. Les différences observées sont discutées en fonction de l'origine éco-géographique des espèces, leurs caractéristiques phénologiques et la fertilité de leurs hybrides F1 interspécifiques. (Résumé d'auteur

    Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke

    Get PDF
    AIMS: Given the impact of vascular injuries and oedema on brain damage caused during stroke, vascular protection represents a major medical need. We hypothesized that angiopoietin-like 4 (ANGPTL4), a regulator of endothelial barrier integrity, might exert a protective effect during ischaemic stroke. METHODS AND RESULTS: Using a murine transient ischaemic stroke model, treatment with recombinant ANGPTL4 led to significantly decreased infarct size and improved behaviour. Quantitative characteristics of the vascular network (density and branchpoints) were preserved in ANGPTL4-treated mice. Integrity of tight and adherens junctions was also quantified and ANGPTL4-treated mice displayed increased VE-cadherin and claudin-5-positive areas. Brain oedema was thus significantly decreased in ANGPTL4-treated mice. In accordance, vascular damage and infarct severity were increased in angptl4-deficient mice thus providing genetic evidence that ANGPTL4 preserves brain tissue from ischaemia-induced alterations. Altogether, these data show that ANGPTL4 protects not only the global vascular network, but also interendothelial junctions and controls both deleterious inflammatory response and oedema. Mechanistically, ANGPTL4 counteracted VEGF signalling and thereby diminished Src-signalling downstream from VEGFR2. This led to decreased VEGFR2-VE-cadherin complex disruption, increased stability of junctions and thus increased endothelial cell barrier integrity of the cerebral microcirculation. In addition, ANGPTL4 prevented neuronal loss in the ischaemic area. CONCLUSION: These results, therefore, show ANGPTL4 counteracts the loss of vascular integrity in ischaemic stroke, by restricting Src kinase signalling downstream from VEGFR2. ANGPTL4 treatment thus reduces oedema, infarct size, neuronal loss, and improves mice behaviour. These results suggest that ANGPTL4 constitutes a relevant target for vasculoprotection and cerebral protection during stroke

    Segregation of mtDNA Throughout Human Embryofetal Development: m.3243A > G as a Model System

    Get PDF
    Mitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate (“mutant load”) accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD). The lack of data regarding heteroplasmy distribution throughout intrauterine development, however, hampers the implementation of such procedures. We tracked the segregation of the m.3243A > G mutation (MT-TL1 gene) responsible for the MELAS syndrome in the developing embryo/fetus, using tissues and cells from eight carrier females, their 38 embryos and 12 fetuses. Mutant mtDNA segregation was found to be governed by random genetic drift, during oogenesis and somatic tissue development. The size of the bottleneck operating for m.3243A > G during oogenesis was shown to be individual-dependent. Comparison with data we achieved for the m.8993T > G mutation (MT-ATP6 gene), responsible for the NARP/Leigh syndrome, indicates that these mutations differentially influence mtDNA segregation during oogenesis, while their impact is similar in developing somatic tissues. These data have major consequences for PND and PGD procedures in mtDNA inherited disorders. Hum Mutat 32:116–125, 2011. © 2010 Wiley-Liss, Inc

    The complexity of the Pk partition problem and related problems in bipartite graphs

    No full text
    International audienceIn this paper, we continue the investigation made in [MT05] about the approximability of Pk partition problems, but focusing here on their complexity. Precisely, we aim at designing the frontier between polynomial and NP-complete versions of the Pk partition problem in bipartite graphs, according to both the constant k and the maximum degree of the input graph. We actually extend the obtained results to more general classes of problems, namely, the minimum k-path partition problem and the maximum Pk packing problem. Moreover, we propose some simple approximation algorithms for those problems

    The Diversity of Religious Diversity. Using Census and NCS Methodology in Order to Map and Assess the Religious Diversity of a Whole Country

    Get PDF
    Religious diversity is often captured in “mapping studies” that use mostly qualitative methods in order to map and assess the religious communities in a given area. While these studies are useful, they often present weaknesses in that they treat only limited geographic regions, provide limited possibilities for comparing across religious groups and cannot test theories. In this article, we show how a census and a quantitative national congregations study (NCS) methodology can be combined in order to map and assess the religious diversity of a whole country (Switzerland), overcoming the problems mentioned above. We outline the methodological steps and selected results concerning organizational, geographic, structural, and cultural diversity

    An Introduction to Temporal Graphs: An Algorithmic Perspective

    Get PDF
    A \emph{temporal graph} is, informally speaking, a graph that changes with time. When time is discrete and only the relationships between the participating entities may change and not the entities themselves, a temporal graph may be viewed as a sequence G1,G2,GlG_1,G_2\ldots,G_l of static graphs over the same (static) set of nodes VV. Though static graphs have been extensively studied, for their temporal generalization we are still far from having a concrete set of structural and algorithmic principles. Recent research shows that many graph properties and problems become radically different and usually substantially more difficult when an extra time dimension in added to them. Moreover, there is already a rich and rapidly growing set of modern systems and applications that can be naturally modeled and studied via temporal graphs. This, further motivates the need for the development of a temporal extension of graph theory. We survey here recent results on temporal graphs and temporal graph problems that have appeared in the Computer Science community

    Unprocessed Viral DNA Could Be the Primary Target of the HIV-1 Integrase Inhibitor Raltegravir

    Get PDF
    Integration of HIV DNA into host chromosome requires a 3′-processing (3′-P) and a strand transfer (ST) reactions catalyzed by virus integrase (IN). Raltegravir (RAL), commonly used in AIDS therapy, belongs to the family of IN ST inhibitors (INSTIs) acting on IN-viral DNA complexes (intasomes). However, studies show that RAL fails to bind IN alone, but nothing has been reported on the behaviour of RAL toward free viral DNA. Here, we assessed whether free viral DNA could be a primary target for RAL, assuming that the DNA molecule is a receptor for a huge number of pharmacological agents. Optical spectroscopy, molecular dynamics and free energy calculations, showed that RAL is a tight binder of both processed and unprocessed LTR (long terminal repeat) ends. Complex formation involved mainly van der Waals forces and was enthalpy driven. Dissociation constants (Kds) revealed that RAL affinity for unbound LTRs was stronger than for bound LTRs. Moreover, Kd value for binding of RAL to LTRs and IC50 value (half concentration for inhibition) were in same range, suggesting that RAL binding to DNA and ST inhibition are correlated events. Accommodation of RAL into terminal base-pairs of unprocessed LTR is facilitated by an extensive end fraying that lowers the RAL binding energy barrier. The RAL binding entails a weak damping of fraying and correlatively of 3′-P inhibition. Noteworthy, present calculated RAL structures bound to free viral DNA resemble those found in RAL-intasome crystals, especially concerning the contacts between the fluorobenzyl group and the conserved 5′C4pA33′ step. We propose that RAL inhibits IN, in binding first unprocessed DNA. Similarly to anticancer drug poisons acting on topoisomerases, its interaction with DNA does not alter the cut, but blocks the subsequent joining reaction. We also speculate that INSTIs having viral DNA rather IN as main target could induce less resistance

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus

    Impairment of the Plasmodium falciparum Erythrocytic Cycle Induced by Angiotensin Peptides

    Get PDF
    Plasmodium falciparum causes the most serious complications of malaria and is a public health problem worldwide with over 2 million deaths each year. The erythrocyte invasion mechanisms by Plasmodium sp. have been well described, however the physiological aspects involving host components in this process are still poorly understood. Here, we provide evidence for the role of renin-angiotensin system (RAS) components in reducing erythrocyte invasion by P. falciparum. Angiotensin II (Ang II) reduced erythrocyte invasion in an enriched schizont culture of P. falciparum in a dose-dependent manner. Using mass spectroscopy, we showed that Ang II was metabolized by erythrocytes to Ang IV and Ang-(1–7). Parasite infection decreased Ang-(1–7) and completely abolished Ang IV formation. Similar to Ang II, Ang-(1–7) decreased the level of infection in an A779 (specific antagonist of Ang-(1–7) receptor, MAS)-sensitive manner. 10−7 M PD123319, an AT2 receptor antagonist, partially reversed the effects of Ang-(1–7) and Ang II. However, 10−6 M losartan, an antagonist of the AT1 receptor, had no effect. Gs protein is a crucial player in the Plasmodium falciparum blood cycle and angiotensin peptides can modulate protein kinase A (PKA) activity; 10−8 M Ang II or 10−8 M Ang-(1–7) inhibited this activity in erythrocytes by 60% and this effect was reversed by 10−7 M A779. 10−6 M dibutyryl-cAMP increased the level of infection and 10−7 M PKA inhibitor decreased the level of infection by 30%. These results indicate that the effect of Ang-(1–7) on P. falciparum blood stage involves a MAS-mediated PKA inhibition. Our results indicate a crucial role for Ang II conversion into Ang-(1–7) in controlling the erythrocytic cycle of the malaria parasite, adding new functions to peptides initially described to be involved in the regulation of vascular tonus
    corecore