44 research outputs found

    Ex vivo exposure to titanium dioxide and silver nanoparticles mildly affect sperm of gilthead seabream (Sparus aurata) - A multiparameter spermiotoxicity approach

    Get PDF
    Nanoparticles (NP) are potentially repmtoxic, which may compromise the success of populations. However, the reprotoxicity of NP is still scarcely addressed in marine fish. Therefore, we evaluated the impacts of environmentally relevant and supra environmental concentrations of titanium dioxide (TiO2: 10 to 10,000 mu g.L-1) and silver NP (Ag: 0.25 to 250 mu g.L-1) on the sperm of gilthead seabream (Sparus aurata). We performed short-term direct exposures (ex vivo) and evaluated sperm motility, head morphometry, mitochondrial function, antioxidant responses and DNA integrity. No alteration in sperm motility (except for supra environmental Ag NP concentration), head morphometry, mitochondrial function, and DNA integrity occurred. However, depletion of all antioxidants occurred after exposure to TiO2 NP, whereas SOD decreased after exposure to Ag NP (lowest and intermediate concentration). Considering our results, the decrease in antioxidants did not indicate vulnerability towards oxidative stress. TiO2 NP and Ag NP induced low spermiotoxicity, without proven relevant ecological impacts.info:eu-repo/semantics/publishedVersio

    Advances on assessing nanotoxicity in marine fish: the pros and cons of combining an ex vivo approach and histopathological analysis in gills

    Get PDF
    The need to overcome logistic and ethical limitations of in vivo nanotoxicity evaluation in marine organisms is essential, mostly when dealing with fish. It is well established that medium/solvent conditions affect dispersion and agglomeration of nanoparticles (NPs), which represents a constraint towards a solid and realistic toxicity appraisal. In this way the pros and cons of an ex vivo approach, using a simplified exposure medium (seawater) and addressing gills histopathology, were explored. The nanotoxic potential of environmentally realistic concentrations of titanium dioxide NPs (TiO2 NPs) was also assessed, disclosing the morpho-functional effects on the gills and the possible uptake/elimination processes. Excised gills of the Senegalese sole (Solea senegalensis) were directly exposed in artificial seawater to 20 and 200 μg L-1 TiO2 NPs, for 2 h and 4 h. Semi-quantitative and quantitative histological analyses were applied. The normal morphology of the gill's epithelia was only slightly altered in the control, reflecting protective mechanisms against the artificiality of the experimental conditions, which, together with the absence of differences in the global histopathological index (Ih), corroborated that the gill's morpho-functional features were not compromised, thereby validating the proposed ex vivo approach. TiO2 NPs induced moderate severity and dissemination of histopathological lesions. After 2 h, a series of compensatory mechanisms occurred in NP treatments, implying an efficient response of the innate defense system (increasing number of goblet cells) and effective osmoregulatory ability (chloride cells proliferation). After 4 h, gills revealed signs of recovery (normalization of the number of chloride and goblet cells; similar Ih), highlighting the tissue viability and effective elimination and/or neutralization of NPs. The uptake of the TiO2 NPs seemed to be favored by the higher particle sizes. Overall, the proposed approach emerged as a high-throughput, reliable, accurate and ethically commendable methodology for nanotoxicity assessment in marine fish.publishe

    Environmental and biological factors influence the relationship between a predator fish, Gambusia holbrooki, and its main prey in rice fields of the Lower Mondego River Valley (Portugal)

    Get PDF
    Abstract We studied the relationships between a predator fish, Gambusia holbrooki, and its main food prey, within the content of a rice field food web. The influence of some environmental and biological factors on these trophic interactions, in combination with existent quantitative information, allowed us to evaluate the ecological viability of using a non-ionic surfactant, Genapol OXD-080, to control a plague caused by crayfish (Procambarus clarkii) populations in the rice fields. In the Lower Mondego River Valley, Portugal, G. holbrooki is abundant in rice fields. It feeds mainly on copepods, cladocerans and rotifers. Surface insects, such as aphids, collembolans, adult (imago) chironomids and other dipterans, are additional food. Large G. holbrooki consumed greater amounts of cladocerans and adult chironomids than other smaller size groups, while small fish prefered rotifers. Gravid females ate copepods, cladocerans, and adult chironomids and other dipterans in significantly greater amounts than immatures, males, and non-gravid females. Non-gravid females ate collembolans in significantly greater quantities than any other fish group. The population density of copepods, cladocerans, adult chironomids, and other dipterans, the area covered by aquatic vegetation, and water temperature all had significant effects on the total number of prey caught by G. holbrooki. In contrast, a negative correlation was found with rotifers, collembolans, aphids in higher densities, and of increased water volume, dissolved oxygen and pH. G. holbrooki holds a key intermediate position in the rice field food chain, feeding in large amounts of aquatic invertebrates and being eaten, in turn, by piscivores. With regard to the toxicity of Genapol OXD-080 on non-target organisms, LC50 values for G. holbrooki and some of its main prey were several times lower than the concentration necessary to decrease the activity of crayfish populations in the rice fields. Thus, Genapol OXD-080 could potentially cause greater damage to the local populations of non-target species and should not be used without taking precautions not to contaminate other important biological reservoirs, such as the rice field irrigation channels

    Brain as a critical target of mercury in environmentally exposed fish (Dicentrarchus labrax)-Bioaccumulation and oxidative stress profiles

    No full text
    Although mercury is recognized as a potent neurotoxicant, information regarding its threat to fish brain and underlying mechanisms is still scarce. In accordance, the objective of this work was to assess vulnerability of fish to mercury neurotoxicity by evaluating brain pro-oxidant status in wild European sea bass (Dicentrarchus labrax) captured in an estuarine area affected by chlor-alkali industry discharges (Laranjo Basin, Ria de Aveiro, Portugal). To achieve this goal, brain antioxidant responses such as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) activities and total glutathione (GSHt) content were measured. Additionally, damage was determined as lipid peroxidation. To ascertain the influence of seasonal variables on both mercury accumulation and oxidative stress profiles, surveys were conducted in contrasting conditions—warm and cold periods. In the warm period, brain of fish from mercury contaminated sites exhibited ambivalent antioxidant responses, viz. higher GR activity and lower CAT activity regarded, respectively, as possible signs of protective adaptation and increased susceptibility to oxidative stress challenge. Though the risk of an overwhelming ROS production cannot be excluded, brain appeared to possess compensatory mechanisms and was able to avoid lipid peroxidative damage. The warm period was the most critical for the appearance of oxidative damage as no inter-site alterations on oxidative stress endpoints were detected in the cold period. Since seasonal differences were found in oxidative stress responses and not in mercury bioaccumulation, environmental factors affected the former more than the latter. This work increases the knowledge on mercury neurotoxicity in feral fish, highlighting that the definition of critical tissue concentrations depends on environmental variables

    Mercury accumulation patterns and biochemical endpoints in wild fish (Liza aurata): A multi-organ approach

    No full text
    The integration of bioaccumulation and effect biomarkers in fish has been proposed for risk evaluation of aquatic contaminants. However, this approach is still uncommon, namely in the context of mercury contamination. Furthermore, a multi-organ evaluation allows an overall account of the organisms' condition. Having in mind the organs' role on metal toxicokinetics and toxicodynamics, gills, liver and kidney of golden grey mullet (Liza aurata) were selected and mercury accumulation, antioxidant responses and peroxidative damage were assessed. Two critical locations in terms of mercury occurrence were selected from an impacted area of the Ria de Aveiro, Portugal (L1, L2), and compared with a reference area. Although kidney was the organ with the highest mercury load, only gills and liver were able to distinguish mercury accumulation between reference (R) and contaminated stations. Each organ demonstrated different mercury burdens, whereas antioxidant responses followed similar patterns. Liver and kidney showed an adaptive capacity to the intermediate degree of contamination/accumulation (L1) depicted in a catalase activity increase. In contrast, none of the antioxidants was induced under higher contamination/accumulation (L2) in any organ, with the exception of renal GST. The lack of lipid peroxidation increase observed in the three organs denunciates the existence of an efficient antioxidant system. However, the evidences of limitations on antioxidants performance at L2 cannot be overlooked as an indication of mercury-induced toxicity. Having in mind the responses of the three organs, CAT revealed to be the most suitable parameter for identifying mercury exposure in the field. Overall, organ-specific mercury burdens were unable to distinguish the intermediate degree of contamination, while antioxidant responses revealed limitations on signalizing the worst scenario, reinforcing the need to their combined use

    Fish consumption and risk of contamination by mercury - Considerations on the definition of edible parts based on the case study of European sea bass

    No full text
    In the present study, the risk to humans by consuming European sea bass (Dicentrarchus labrax), captured at three sites along a Hg contamination gradient, was evaluated by comparing muscle and kidney total Hg (T-Hg) levels with the European regulations for marketed fish. Moreover, T-Hg and organic Hg (O-Hg) levels in muscle were compared with the Provisional Tolerable Weekly Intake (PTWI) and the Reference Dose (RfD). Although T-Hg levels in muscle were below the European value allowable for marketed fish, kidney’s levels were higher than the set value, stressing the importance of redefining the concept of edible tissue and which tissues should be considered. Mercury weekly ingestion in the contaminated areas was higher than the PTWI, and O-Hg daily ingestion rates were higher than the RfD in all sampling sites. Thus, populations consuming sea bass from the contaminated sites may be at risk, with particular relevance for children and pregnant women

    Mercury organotropism in feral european sea bass (Dicentrarchus labrax)

    No full text
    The knowledge of mercury (Hg) burdens in a wide set of tissues and organs of exposed fish is crucial to understand the internal distribution dynamics and thus predict Hg bioavailability and implications for ecosystem and human health. Total Hg was measured in six tissues of Dicentrarchus labrax captured along an estuarine contamination gradient, revealing the following pattern: liver > kidney > muscle > brain ≈ gills > blood. All of the tissues displayed intersite differences, although brain and muscle seemed to better reflect the extent of contamination. Hg speciation showed that liver presented higher concentrations than muscle for both organic and inorganic forms. Furthermore, liver seemed to exert a protective action in relation to Hg accumulation in the other tissues and organs. This protection seems to be particularly marked in relation to the brain, whereas liver is assisted in that action by kidney and muscle

    Mercury accumulation and tissue-specific antioxidant efficiency in the wild European sea bass (Dicentrarchus labrax) with emphasis on seasonality

    No full text
    The main goal of this study was to assess both mercury (Hg) accumulation and organs' specific oxidative stress responses of gills, liver and kidney of Dicentrarchus labrax with emphasis on seasonality. Fish were collected in cold and warm periods in three stations: reference, moderated and highly contaminated sites. Our results showed that seasonal factors slightly influenced Hg accumulation between year periods (cold and warm) and strongly affected organs' response basal levels. In contrast, seasonality seemed not to influence oxidative stress responses, since similar response patterns were obtained for both year periods, and moderate degree of antioxidant responses was obtained. Moreover, the oxidative stress profile may be attributed to Hg contamination degree, which showed organ-specific response and accumulation patterns. Hence, gills showed to be able to adapt to Hg contamination, and in opposition, kidney and liver demonstrated some vulnerability to Hg toxicity. The critical Hg concentrations indicated specific threshold limits for each organ. Overall, seasonality should be taken into account in monitoring programmes, helping to characterize the individuals' reference values of response and thus to discriminate between the effects induced by natural causes or by contamination

    Trace elements in two marine fish species during estuarine residency: Non-essential versus essential

    No full text
    Trace element levels in fish are of particular interest, owing the potential risk to human health. In accordance, juveniles of Dicentrarchus labrax and of Liza aurata were sampled and arsenic, cadmium, chromium, selenium and zinc were determined in the muscle. The levels of trace elements in muscle demonstrated to be similar for both species and sites, with the exception of selenium levels at reference, which seemed to be higher in D. labrax. Moreover, apart from arsenic levels in muscle, all elements were in conformity with the existent regulatory guidelines for fish consumption. The dietary intake of each element was also calculated, with arsenic and selenium showing intakes above the recommended dietary allowances. Nevertheless, no arsenic speciation was carried out and thus no accurate risk evaluation could be established. Additionally, selenium levels never exceeded the dietary allowances more than five times, which are considered safe
    corecore