133 research outputs found
Water warming garment versus forced air warming system in prevention of intraoperative hypothermia during liver transplantation: a randomized controlled trial [ISRCTN32154832]
BACKGROUND: The authors compared two strategies for the maintenance of intraoperative normothermia during orthotopic liver transplantation (OLT): the routine forced-air warming system and the newly developed, whole body water garment. METHODS: In this prospective, randomized and open-labelled study, 24 adult patients were enrolled in one of two intraoperative temperature management groups during OLT. The water-garment group (N = 12) received warming with a body temperature (esophageal) set point of 36.8°C. The forced air-warmer group (N = 12) received routine warming therapy using upper- and lower-body forced-air warming system. Body core temperature (primary outcome) was recorded intraoperatively and during the two hours after surgery in both groups. RESULTS: The mean core temperatures during incision, one hour after incision and during the skin closing were significantly higher (p < 0.05, t test with Bonferroni corrections for the individual tests) in the water warmer group compared to the control group (36.7 ± 0.1, 36.7 ± 0.2, 36.8 ± 0.1 vs 36.1 ± 0.4, 36.1 ± 0.4, 36.07 ± 0.4°C, respectively). Moreover, significantly higher core temperatures were observed in the water warmer group than in the control group during the placement of cold liver allograft (36.75 ± 0.17 vs 36.09 ± 0.38°C, respectively) and during the allograft reperfusion period (36.3 ± 0.26 vs 35.52 ± 0.42°C, respectively). In addition, the core temperatures immediately after admission to the SICU (36.75 ± 0.13 vs 36.22 ± 0.3°C, respectively) and at one hr (36.95 ± 0.13 vs 36.46 ± 0.2°C, respectively) were significantly higher in the water warmer group, compared to the control group, whereas the core temperature did not differ significantly afte two hours in ICU in both groups. CONCLUSIONS: The investigated water warming system results in better maintenance of intraoperative normothermia than routine air forced warming applied to upper- and lower body
Spin-Nematic Squeezed Vacuum in a Quantum Gas
Using squeezed states it is possible to surpass the standard quantum limit of
measurement uncertainty by reducing the measurement uncertainty of one property
at the expense of another complementary property. Squeezed states were first
demonstrated in optical fields and later with ensembles of pseudo spin-1/2
atoms using non-linear atom-light interactions. Recently, collisional
interactions in ultracold atomic gases have been used to generate a large
degree of quadrature spin squeezing in two-component Bose condensates. For
pseudo spin-1/2 systems, the complementary properties are the different
components of the total spin vector , which fully characterize the state on
an SU(2) Bloch sphere. Here, we measure squeezing in a spin-1 Bose condensate,
an SU(3) system, which requires measurement of the rank-2 nematic or quadrupole
tensor as well to fully characterize the state. Following a quench
through a nematic to ferromagnetic quantum phase transition, squeezing is
observed in the variance of the quadratures up to -8.3(-0.7 +0.6) dB
(-10.3(-0.9 +0.7) dB corrected for detection noise) below the standard quantum
limit. This spin-nematic squeezing is observed for negligible occupation of the
squeezed modes and is analogous to optical two-mode vacuum squeezing. This work
has potential applications to continuous variable quantum information and
quantum-enhanced magnetometry
Voltage-programmable liquid optical interface
Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices
Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans
Oxidative stress is integral to the development of endothelial dysfunction and cardiovascular disease. As NRF2 is a key transcription factor in antioxidant defense, we aimed to determine whether polymorphisms within the promoter region of the gene encoding NRF2 (NFE2L2) would significantly modify vasodilator responses in humans
Digital intervention increases influenza vaccination rates for people with diabetes in a decentralized randomized trial
People with diabetes (PWD) have an increased risk of developing influenza-related complications, including pneumonia, abnormal glycemic events, and hospitalization. Annual influenza vaccination is recommended for PWD, but vaccination rates are suboptimal. The study aimed to increase influenza vaccination rate in people with self-reported diabetes. This study was a prospective, 1:1 randomized controlled trial of a 6-month Digital Diabetes Intervention in U.S. adults with diabetes. The intervention group received monthly messages through an online health platform. The control group received no intervention. Difference in self-reported vaccination rates was tested using multivariable logistic regression controlling for demographics and comorbidities. The study was registered at clinicaltrials.gov: NCT03870997. A total of 10,429 participants reported influenza vaccination status (5158 intervention, mean age (±SD) = 46.8 (11.1), 78.5% female; 5271 control, Mean age (±SD) = 46.7 (11.2), 79.4% female). After a 6-month intervention, 64.2% of the intervention arm reported influenza vaccination, vers us 61.1% in the control arm (diff = 3.1, RR = 1.05, 95% CI [1.02, 1.08], p = 0.0013, number needed to treat = 33 to obtain 1 additional vaccination). Completion of one or more intervention messages was associated with up to an 8% increase in vaccination rate (OR 1.27, 95% CI [1.17, 1.38], p < 0.0001). The intervention improved influenza vaccination rates in PWD, suggesting that leveraging new technology to deliver knowledge and information can improve influenza vaccination rates in high-risk populations to reduce public health burden of influenza. Rapid cycle innovation could maximize the effects of these digital interventions in the future with other populations and vaccines
Computational cancer biology: education is a natural key to many locks
BACKGROUND: Oncology is a field that profits tremendously from the genomic data generated by high-throughput technologies, including next-generation sequencing. However, in order to exploit, integrate, visualize and interpret such high-dimensional data efficiently, non-trivial computational and statistical analysis methods are required that need to be developed in a problem-directed manner. DISCUSSION: For this reason, computational cancer biology aims to fill this gap. Unfortunately, computational cancer biology is not yet fully recognized as a coequal field in oncology, leading to a delay in its maturation and, as an immediate consequence, an under-exploration of high-throughput data for translational research. SUMMARY: Here we argue that this imbalance, favoring ’wet lab-based activities’, will be naturally rectified over time, if the next generation of scientists receives an academic education that provides a fair and competent introduction to computational biology and its manifold capabilities. Furthermore, we discuss a number of local educational provisions that can be implemented on university level to help in facilitating the process of harmonization
Non-equilibrium dynamics of an unstable quantum pendulum
A pendulum prepared perfectly inverted and motionless is a prototype of
unstable equilibria and corresponds to an unstable hyperbolic fixed point in
the dynamical phase space. Unstable fixed points are central to understanding
Hamiltonian chaos in classical systems. In many-body quantum systems,
mean-field approximations fail in the vicinity of unstable fixed points and
lead to dynamics driven by quantum fluctuations. Here, we measure the
non-equilibrium dynamics of a many-body quantum pendulum initialized to a
hyperbolic fixed point of the phase space. The experiment uses a spin-1 Bose
condensate, which exhibits Josephson dynamics in the spin populations that
correspond in the mean-field limit to motion of a non-rigid mechanical
pendulum. The condensate is initialized to a minimum uncertainty spin state,
and quantum fluctuations lead to non-linear spin evolution along a separatrix
and non-Gaussian probability distributions that are measured to be in good
agreement with exact quantum calculations up to 0.25 s. At longer times, atomic
loss due to the finite lifetime of the condensate leads to larger spin
oscillation amplitudes compared to no loss case as orbits depart from the
separatrix. This demonstrates how decoherence of a many-body system can result
in more apparent coherent behaviour. This experiment provides new avenues for
studying macroscopic spin systems in the quantum limit and for investigations
of important topics in non-equilibrium quantum dynamics.Comment: Main text 6 pages, 5 figures; Supplement 4 pages, 1 figur
Characterization of Genome-Wide Association-Identified Variants for Atrial Fibrillation in African Americans
Despite a greater burden of risk factors, atrial fibrillation (AF) is less common among African Americans than European-descent populations. Genome-wide association studies (GWAS) for AF in European-descent populations have identified three predominant genomic regions associated with increased risk (1q21, 4q25, and 16q22). The contribution of these loci to AF risk in African American is unknown.We studied 73 African Americans with AF from the Vanderbilt-Meharry AF registry and 71 African American controls, with no history of AF including after cardiac surgery. Tests of association were performed for 148 SNPs across the three regions associated with AF, and 22 SNPs were significantly associated with AF (P<0.05). The SNPs with the strongest associations in African Americans were both different from the index SNPs identified in European-descent populations and independent from the index European-descent population SNPs (r(2)<0.40 in HapMap CEU): 1q21 rs4845396 (odds ratio [OR] 0.30, 95% confidence interval [CI] 0.13-0.67, P = 0.003), 4q25 rs4631108 (OR 3.43, 95% CI 1.59-7.42, P = 0.002), and 16q22 rs16971547 (OR 8.1, 95% CI 1.46-45.4, P = 0.016). Estimates of European ancestry were similar among cases (23.6%) and controls (23.8%). Accordingly, the probability of having two copies of the European derived chromosomes at each region did not differ between cases and controls.Variable European admixture at known AF loci does not explain decreased AF susceptibility in African Americans. These data support the role of 1q21, 4q25, and 16q22 variants in AF risk for African Americans, although the index SNPs differ from those identified in European-descent populations
Renoprotective effect of the angiotensin-receptro antagonist ibersartan in patients with nephropathy due to type 2 diabetes
Background: It is unknown whether either the angiotensin-II-receptor blocker irbesartan or the calcium-channel blocker amlodipine slows the progression of nephropathy in patients with type 2 diabetes independently of its capacity to lower the systemic blood pressure. Methods: We randomly assigned 1715 hypertensive patients with nephropathy due to type 2 diabetes to treatment with irbesartan (300 mg daily), amlodipine (10 mg daily), or placebo. The target blood pressure was 135/85 mm Hg or less in all groups. We compared the groups with regard to the time to the primary composite end point of a doubling of the base-line serum creatinine concentration, the development of end-stage renal disease, or death from any cause. We also compared them with regard to the time to a secondary, cardiovascular composite end point. Results: The mean duration of follow-up was 2.6 years. Treatment with irbesartan was associated with a risk of the primary composite end point that was 20 percent lower than that in the placebo group (P=0.02) and 23 percent lower than that in the amlodipine group (P=0.006). The risk of a doubling of the serum creatinine concentration was 33 percent lower in the irbesartan group than in the placebo group (P=0.003) and 37 percent lower in the irbesartan group than in the amlodipine group (P<0.001). Treatment with irbesartan was associated with a relative risk of end-stage renal disease that was 23 percent lower than that in both other groups (P=0.07 for both comparisons). These differences were not explained by differences in the blood pressures that were achieved. The serum creatinine concentration increased 24 percent more slowly in the irbesartan group than in the placebo group (P=0.008) and 21 percent more slowly than in the amlodipine group (P=0.02). There were no significant differences in the rates of death from any cause or in the cardiovascular composite end point. Conclusions: The angiotensin-II-receptor blocker irbesartan is effective in protecting against the progression of nephropathy due to type 2 diabetes. This protection is independent of the reduction in blood pressure it causes
The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury
In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are involved in migration and survival of MSCs in vitro, but little is known about their role in the in vivo therapeutic effectiveness of MSCs in renal ischemia/reperfusion (I/R) injury. Here, we evaluated the role of SDF-1-CXCR4/CXCR7 pathway in regulating chemotaxis, viability and paracrine actions of HP-MSCs in vitro and in vivo. Compared with normoxic preconditioning (NP), HP not only improved MSC chemotaxis and viability but also stimulated secretion of proangiogenic and mitogenic factors. Importantly, both CXCR4 and CXCR7 were required for the production of paracrine factors by HP-MSCs though the former was only responsible for chemotaxis while the latter was for viability. SDF-1α expression was upregulated in postischemic kidneys. After 24 h systemical administration following I/R, HP-MSCs but not NP-MSCs were selectively recruited to ischemic kidneys and this improved recruitment was abolished by neutralization of CXCR4, but not CXCR7. Furthermore, the increased recruitment of HP-MSCs was associated with enhanced functional recovery, accelerated mitogenic response, and reduced apoptotic cell death. In addition, neutralization of either CXCR4 or CXCR7 impaired the improved therapeutic potential of HP-MSCs. These results advance our knowledge about SDF-1-CXCR4/CXCR7 axis as an attractive target pathway for improving the beneficial effects of MSC-based therapies for renal I/R
- …