27 research outputs found

    Meiotic silencing and fragmentation of the male germline restricted chromosome in zebra finch

    Get PDF
    During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently. The W chromosome is already inactive in early meiotic prophase, and inactive chromatin marks may spread on to the Z upon synapsis. Mammalian MSCI is considered as a specialised form of the general meiotic silencing mechanism, named meiotic silencing of unsynapsed chromatin (MSUC). Herein, we studied the avian form of MSUC, by analysing the behaviour of the peculiar germline restricted chromosome (GRC) that is present as a single copy in zebra finch spermatocytes. In the female germline, this chromosome is present in two copies, which normally synapse and recombine. In contrast, during male meiosis, the single GRC is always eliminated. We found that the GRC in the male germline is silenced from early leptotene onwards, similar to the W chromosome in avian oocytes. The GRC remains largely unsynapsed throughout meiotic prophase I, although patches of SYCP1 staining indicate that part of the GRC may self-synapse. In addition, the GRC is largely devoid of meiotic double strand breaks. We observed a lack of the inner centromere protein INCENP on the GRC and elimination of the GRC following metaphase I. Subsequently, the GRC forms a micronucleus in which the DNA is fragmented. We conclude that in contrast to MSUC in mammals, meiotic silencing of this single chromosome in the avian germline occurs prior to, and independent of DNA double strand breaks and chromosome pairing, hence we have named this phenomenon meiotic silencing prior to synapsis (MSPS)

    Evaluating the Relationship between Spermatogenic Silencing of the X Chromosome and Evolution of the Y Chromosome in Chimpanzee and Human

    Get PDF
    Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI) results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals

    Sperm donation facing the challenges of the revision of the bioethics law of August 2, 2021

    No full text
    International audienc

    The testimony of the French CECOS federation about access to assisted reproductive techniques using sperm donation and access to ``origins''

    No full text
    International audienceThe French CECOS (Centres d'Etude et de Conservation des Oeufs et du Sperme) centers federation brings together the majority of centers authorized for the management of Assisted Reproductive Techniques (ART) using a third donor (97% of centers authorized for sperm donation, 80% of authorized centers for egg donation, 80% of authorized centers for embryo reception). Law No. 2021-1017 of August 2, 2021 related to bioethics provides many changes in the practices of ART centers, in particular concerning ART using third-part donors: the possibility of care for lesbian couples or of unmarried women, the possibility of double gamete donation (sperm and egg donation), the possibility (under conditions) of access to non-identifying data and to the identity of the third-party donor even for adults born before this law. More than 40,000 people of legal age have been born following the use of third-part donor ART within a CECOS. How many of them will request the commission for access to non-identifying data and the identity of the third part donor? What answers will they have? What consequences will these measures have on former donors and their families? Furthermore, how can we ensure reasonable waiting times for all recipients of sperm donation? France wants to put in place a system based on values such as the non-remuneration of donation and donors motivated by altruism, recipients supported in sperm donation with a reasonable time, and health insurance coverage for everyone. The challenge is to be taken up. It requires perfect cooperation between professionals, supervisory authorities and government authorities in order to meet the expectations of patients

    Fertility issues in men with spinal cord injury

    No full text
    International audienc

    Organization of the X and Y chromosomes in human, chimpanzee and mouse pachytene nuclei using molecular cytogenetics and three-dimensional confocal analyses.

    No full text
    We used multicolour fluorescence in-situ hybridization on air-dried pachytene nuclei to analyse the structural and functional domains of the sex vesicle (SV) in human, chimpanzee and mouse. The same technology associated with 3-dimensional analysis was then performed on human and mouse pachytene nuclei from cytospin preparations and tissue cryosections. The human and the chimpanzee SVs were very similar, with a consistently small size and a high degree of condensation. The mouse SV was most often seen to be large and poorly condensed, although it did undergo progressive condensation during pachynema. These results suggest that the condensation of the sex chromosomes is not a prerequisite for the formation of the mouse SV, and that a different specific mechanism could be responsible for its formation. We also found that the X and Y chromosomes are organized into two separate and non-entangled chromatin domains in the SV of the three species. In each species, telomeres of the X and Y chromosomes remain clustered in a small area of the SV, even those without a pseudoautosomal region. The possible mechanisms involved in the organization of the sex chromosomes and in SV formation are discussed

    The impact of drugs on male fertility: a review

    No full text
    International audienceBeside cytotoxic drugs, other drugs can impact men's fertility through various mechanisms. Via the modification of the hypothalamic-pituitary-gonadal axis hormones or by non-hormonal mechanisms, drugs may directly and indirectly induce sexual dysfunction and spermatogenesis impairment and alteration of epididymal maturation. This systematic literature review summarizes existing data about the negative impact and associations of pharmacological treatments on male fertility (excluding cytotoxic drugs), with a view to making these data more readily available for medical staff. In most cases, these effects on spermatogenesis/sperm maturation/sexual function are reversible after the discontinuation of the drug. When a reprotoxic treatment cannot be stopped and/or when the impact on semen parameters/sperm DNA is potentially irreversible (Sulfasalazine Azathioprine, Mycophenolate mofetil and Methotrexate), the cryopreservation of spermatozoa before treatment must be proposed. Deleterious impacts on fertility of drugs with very good or good level of evidence (Testosterone, Sulfasalazine, Anabolic steroids, Cyproterone acetate, Opioids, Tramadol, GhRH analogues and Sartan) are developed
    corecore